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FOREWORD 

These Proceedings preserve in print most of the invited addresses and 
contributed papers of the 1981 Army Numerical Analysis and Computers 
Conference. The Army Mathematics Steering Committee (AMSC) sponsors these 
meetings on behalf of the Office of the Chief of Research, Development and 
Acquisition. Members of this committee insist that the guest lecturer be 
internationally known scientists who are effective researchers and are pre- 
sently working in frontier fields of current interest. They feel that the 
addresses by the invited speakers as well as the contributed papers by Army 
personnel will stimulate the interchange of ideas among the scientists 
attending said meetings. 

Under the date of 15 October 1980, Colonel Robert J. Feist, Acting Director, 
US Army Missile Command, issued a formal invitation to hold the 1981 con- 
ference at his installation. Part of his letter to Dr. Jagdish Chandra, 
Chairman of the AMSC is quoted below:. 

The Army Mathematics Steering Committee is invited to hold its 1981 
Numerical Analysis and Computers Conference at the U. S. Army Missile 
Command. The dates 25-26 February 1981 are suggested as being a 
suitable time for this purpose. 

The Army Missile Command is looking forward to offering this opportunity 
for mathematicians and other scientists doing research for the Army to 
share their ideas with each other and with this cunmand. 

The MICOM point of contact in making further arrangements is Dr. B. Z. 
Jenkins, Autovon 746-7279. 

This is the second in this series of conferences to have as its host the 
U. S. Army Missile Command. The 1978 conference was held at Redstone 
Arsenal and had Dr. S. H. Lehnigk as its Chairman on Local Arrangements. 
This year Dr. B. Z. Jenkins served in this capacity. Both of these gentle- 
men are members of the AMSC, and both of them did an excellent job of 
handling the many details needed to conduct meetings of this size. 

The theme of this year's conference was "Mathematical Software". Not only 
did the invited speakers treat this important area but many of the contri- 
buted papers emphasized it. Preceding the conference on 24-25 February 1981 
a tutorial on "Software Reliability" was offered by Professors B. Littlewood 
of the City University of London (on leave at George Washington University) 
and V. Basili of the University of Maryland. Another special event was an 
evening session on the "UNIX Operating System" for certain computers manu- 
factured by the Digital Equipment Corporation. The speakers for this 
meeting were Drs. B. Henriksen and Fred Bunn of the Ballistic Research 
Laboratory, together with Professor R. Riesenfeld of the University of Utah. 
The names of the invited speakers and the titles of their addresses are 
noted on the following page. 
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Speaker and Affiliation Title of Address 

Dr. W. J. Cody OBSERVATIONS ON THE MATHEMATICAL 
Argonne National Laboratory SOFTWARE EFFORT 

Professor B. F. Caviness 
Rensselaer Polytechnic 

Institute 

ALGEBRAIC COMPUTATION 

Professor S. F. McCormick 
Colorado State University 

NUMERICAL SOFTWARE FOR FIXED POINT 
MICROPROCESSOR APPLICATIONS AND FOR 
FAST IMPLEMENTATION OF MULTIGRID 
TECHNIQUES 

Professor L. J. Osterweil STRATEGY FOR INTEGRATING PROGRAM 
University of Colorado TESTING AND ANALYSIS TOOLS 

The success of this conference was due to many scientists, including the 
active and enthusiastic 'members of the audience, the chairpersons of the 
sessions and the authors of the papers. The members of the AMSC would like 
to thank these gentlemen for taking time to prepare papers for these pro- 
ceedings so that persons unable to attend this symposium can profit by their 
contributions to the scientific literature. 
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Observations on the Mathematical Software Effort 

W. J. Cody + 

Applied Mathematics Division 
Argonne National Laboratory 

Argonne, Illinois 60439 

Abstract. John Rice introduced the term 'mathematical software' in 1969 to 
denote "the set of algorithms in the area of mathematics." Beginning with a 
meeting at Purdue University the following year, work on mathematical software 
has attracted ever more talented people and has steadily gained in professional 
recognition. In this paper we discuss certain milestones, both successes and 
disappointments, which mark this rise. We also examine the present work spec- 
trum and discuss new problems arising from advancing technology and changing 
work patterns. 

1. Introduction. John Rice coined the term 'mathematical software' in 1969, and 
focussed attention on the subject the following year with a symposium held as 
part of a Special Year in Numerical Analysis at Purdue University. The movement 
spawned by that first meeting has been fruitful. In 1969 only a few individuals 
worked on what we now call mathematical software, and only a few fortunate com- 
puter sites had access to decent numerical programs. Today many talented people 
work in the field, large collections of good numerical software are widely 
available, and specialized meetings are common. 

A description of the mathematical software effort is difficult because it 
is so broad, Its domain is that nebulous region between the discovery of numer- 
ical algorithms and the consumption of numerical software. On the one hand 
numerical analysts devise new computational methods, and on the other hand indi- 
viduals wish to apply effective methods to their immediate problems. It is the 
job Iof the mathematical software effort to bridge the gap by packaging numerical 
analysts' work in software appealing to the consumer. Strictly speaking, work 
On mathematical software is limited to tasks related to the implementation of 
numerical algorithms. In practice the spectrum of activities is surprisingly 
wide because the process of implementation is itself worthy of study. In addi- 
tion to obvious concerns with program design and testing, there are major con- 
cerns with programming practices, documentation standards, software organization 
and distribution methods. Other activities involve the development of program- 
ming tools to partially automate design, implementation, testing and maintenance 
of software, and work on the computational environment, including the design of 
arithmetic systems and programming languages properly supportive of good numeri- 
cal software. Major contributions have been made in each of these areas by 
individuals who consider their primary interest to be mathematical software. 

The published proceedings of the Purdue meeting contain Rice's appraisal of 
the mathematical software effort as it stood in 1970 [45], including a chrono- 
logical account of progress, This paper is a similar appraisal of the effort as 
it stands today. Instead of updating the chronological record, however, we dis- 
cuss what we consider to be major milestones marking progress to this point. We 

5': This work was supported by the Applied Mathematical Sciences Research Pro- 
gram (KC-04-02) of the Office of Energy Research of the U.S. Department of Ener- 
gy under Contract W-31-109-Eng-38. 



then examine current problems in the field and future challenges posed by an 
advancing technology. This work was inspired by a panel session on the same 
subject that ended the week-long International Seminar on Problems and Metho- 
dologies in Mathematical Software Production held this past November in 
Sorrento, Italy, under the sponsorship of The University of Naples and the 
C.N.R. We gratefully acknowledge the contributions of our fellow panelists, B. 
Ford, T. J. Dekker, M. Gentleman, J. N. Lyness and P. C. Messina, and a respon- 
sive audience. With the benefit of leisurely reflection we have reorganized and 
expanded some of their ideas and combined them with our own thoughts on the 
matter. We alone are responsible for the selection and expression of the opin- 
ions that follow, however. 

The reader should be aware that the views presented below may be colored by 
personal bias, and that other views exist. The surveys and suggestions for 
future research in [24,28,39,47,48] are especially recommended to the interested 
reader. 

2. The Past. Many people associate the beginning of the mathematical software 
effort with Rice's 1969 call for a meeting at Purdue University [44]. The roots 
go back further, however. While it would be trite to trace them to the first 
numerical subroutine libraries, we detect an emerging concern for software qual- 
ity in the early 1960's. By then individuals at The University of Toronto, The 
University of Chicago, Stanford University, Bell Laboratories and Argonne 
National Laboratory were critically examining software and advertising their 
findings through technical reports and discussions at computer user group meet- 
ings. The ideas and evaluation techniques were not well enough established for 
publication in refereed journals, however, and efforts were hampered by poor 
communications. Often workers at one location were completely unaware of simi- 
lar work elsewhere. Yet each of these computing centers developed outstanding 
program libraries by contemporary standards. 

In early 1966 J. F. Traub organized SICNUM, the Special Interest Committee 
on Numerical Mathematics. The group grew quickly, and by midyear when the first 
informal SICNUM Newsletter appeared it had a membership of almost 1.000. Two 
articles in the first Newsletter typify SIGNUM's interests. The first announced 
the establishment of a working group "to investigate testing and certification 
techniques for numerical subroutines," and the second announced a SICNUM spon- 
sored evening session at the 1966 National ACM Conference. The session included 
a panel discussion ltjn 
rithms." 

the area of machine implementation of numerical algo- 
By constantly emphasizing efforts to improve the quality of numerical 

software, SICNUM and its successor SIGNUM set the stage for Rice's 1969 call for 
a symposium. 

In his call Rice defined mathematical software as "computer programs which 
implement widely applicable mathematical procedures" [44]. This contrasts with 
the definition he later included in the published proceedings, "the set of algo- 
rithms in the area of mathematics" [45]. These two definitions illustrate the 
fundamental confusion between algorithms and computer programs that plagued the 
early development of numerical software. The realization that an implementation 
is different from the underlying algorithm marks the emergence of mathematical 
software as a separate field of endeavor. 
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That difference was not widely understood in 1969. Despite early admoni- 
tions from G. Forsythe [22] and other prominent researchers, most numerical 
analysts still believed that their work was finished when they had defined an 
algorithm. Computer programming was a job for computer programmers; numerical 
analysts only programmed when it was necessary for their research (and pure 
mathematicians never programmed). A university professor seeking advancement 
and tenure shied away from working on numerical software. As a result most of 
the early work was concentrated in government and industrial laboratories with 
only a few selfless university people involved. Unfortunately, the same atti- 
tudes are still common. While work on mathematical software has gained some 
professional stature and there are more talented people involved in the effort 
today than were involved in 1969, many others still do not dare to become 
involved if they seek promotion. This is still especially true at many univer- 
sities. 

Three software projects that greatly influenced the mathematical software 
effort began about the time of the Purdue meeting. Each project, IMSL, NAG and 
NATS, resulted in a widely-used collection of high-quality numerical software. 
Certain software collections were publically available before this. Computer 
user's groups had organized program repositories by the early 1960's, and the 
IBM Scientific Subroutine Package (SSP) was available on the IBM 7094, for exam- 
ple. Although these collections contained a few good programs, their general ' 
reputations were deservedly notorious. The IMSL, NAG and NATS collections were 
the first to combine quality with wide distribution. 

IMSL, International Mathematical and Statistical Libraries, Inc,, was 
founded in 1971 by some of the people involved in the IBM SSP effort. It 
delivered the first purely commercial numerical subroutine library to IBM custo- 
mers a year later. By mid 1973 the library had also been delivered to UNIVAC 
and CDC customers, and for the first time the same library of numerical programs 
became available on a variety of computing equipment. This enabled numerical 
programmers to write and distribute applications programs without worrying about 
the availability of a decent support library. Today IMSL supports most major 
computers. The success of this venture is suggested by the number of computing 
centers now relying on IMSL and its competitors for their core library, thus 
freeing local personnel to develop the specialized programs necessary for their 
own work. 

IMSL's main competition comes from the NAG and, to a lesser extent, PORT 
libraries. NAG, originally Nottingham Algorithms Group but now Numerical Algo- 
rithm.s Group, was organized about 1970 in Great Britain as a cooperative venture 
between universities using ICL 1906A computers. Supported by heavy government 
subsidies, NAG extended its coverage to other machines and now seeks to become 
self-supporting. The PORT library is a product of Western Electric arising from 
the early library work at Bell Laboratories. It is not aggressively marketed, 
and is therefore not as widely used as the IMSL and NAG libraries. 

The NATS project, National Activity to Test Software, was conceived in 1970 
and funded in 1971 by the National Science Foundation and the Atomic Energy Com- 
mission to study problems in producing, certifying, distributing and maintaining 
quality numerical software [S]. This was a cooperative effort between personnel 
at Argonne National Laboratory, Stanford University, The University of Texas at 
Austin and scattered test sites to examine software production as a research 
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problem. Intrinsic to this effort was the production of two software packages, 
the EISPACK collection of matrix eigensystem programs and the E'UNPACK collection 
of special function programs. The project formally ended with the distribution 
of extended second releases of both packages in 1976 [11,23,51]. 

By any measure, the NATS project was a spectacular success. Not only did 
it produce superior software, but it also pioneered in organizational and techn- 
ical achievements that are still being exploited. For example, the project 
developed an early system for automated program transformation and maintenance 
[SO] that led directly to current r-esearch on the TAMPR system [6]. We believe 
that the NATS aids were developed before similar aids for program transformation 
were developed at JPL [31] and within the IMSL [3] and NAG [19] projects. They 
were certainly the first to be successfully used in a software project. Impor- 
tant as such technical achievements were, however, they were overshadowed by the 
organizational concepts the project developed. Machura and Sweet recently 
stated [36], "The most important lesson learned from the ElSPACK project is that 
the development and distribution of quality software can be achieved by the 
joint efforts of several different organizations." Before the NATS success 
software was typically developed with the limited resources of one organization; 
since the NATS success cooperative ventures have become common. 

None of this would have mattered if the NATS software had not been supe- 
rior. Fortunately, the software produced by the project was well received and 
is still considered to be some of the best available. EISPACK, in particular, 
set and met high standards for performance, transportability and documentation. 
It has become a paradigm for thematic numerical software collections with the 
term 'PACK' now implying all that is good in numerical software. 
EISPACK's influence, 

Attesting to 
the following PACKS in addition to FUNPACK either exist or 

are in advanced planning stages: ELI,PACK [46], FISHPAK [2], ITPACK [26], LINPACK 
[17], MINPACK [37], PUEPACK [42], QUAUPACK [43], ROSEPACK [14], SPARSPAK [25], 
TESTPACK [9] and TOOLPACK [40]. While many of these are superb packages, the 
use of a 'PACK' name does not automatically instill quality. 

It is disappointing that the NATS experience was not fully exploited. 
Attempts to establish a central organization for software production based on 
the NATS concept [15,16] failed for various political and technical reasons. 
This denied segments of the numerical software community access to experienced 
people and important resources. Many of the projects mentioned above had to 
rely on their own resources to coordinate production, certification and distri- 
bution of their software, duplicating similar capabilities already developed in 
other projects. 

The first Purdue symposium was followed by two other important meetings. 
SIGNUIl sponsored a meeting in 1971 in Ljubljana, Yugoslavia, concurrent with the 
1971 IFIP Congress, that ultimately led to the establishment in late 1974 of WG 
2.5, the IFIP Working Group on Numerical Software. Members of the working group 
now represent numerical software interests -i.n language and hardware standardiza- 
tion efforts, often with detailed advice from the group as a whole. Jn addition 
the working group has organized several international workshops on software 
topics and has drafted and published several technical reports. 

The other important meeting was the second mathematical software symposium 
held at Purdue in 1974. While its influence was not as great as that of the 
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first meeting, it did lead to the establishment of the ACM Transactions on 
Mathematical Software with John Rice as editor. Since its appearance in early 
1975 with papers from the Purdue meeting, TOMS has complemented the SIGNUM 
Newsletter by providing an outlet for refereed numerical software papers. 

The second Purdue meeting was also noteworthy for the first open discussion 
of the BLAs, ox Basic Linear Algebra Subprograms [32]. As the name implies, the 
BLAs are a collection of Fortran subprograms implementing low level operations, 
such as the dot product, from linear algebra, The project was originally organ- 
ized in 1973 as a private effort to reach consensus on names, calling sequences 
and functional descriptions for such programs, but it quickly became a coopera- 
tive eEfort officially sanctioned by ACM-SIGNUM. Once conventions had been 
agreed on, it was possible for linear algebra programs to do fundamental opera- 
tions in a uniform way. This was already a significant accomplishment, but the 
group also prepared efficient implementations of the BLAs routines for most 
popular computers. The project's most important contribution, however, was the 
concept of establishing popular 'conventions' as opposed to official standards. 
Language designers are reluctant to augment standard languages to include some- 
thing useful to only a small group. Even if that is done, years pass before the 
new feature is available in compilers. The establishment of private conventions 
outside language standards is a more reasonable approach, and the BLAs project 
demonstrates that it is also a practical one. As with NATS, this lead has not 
been fully exploited. 

1;t is difficult to assess the importance of events in the immediate past, 
but we believe that the recently proposed IEEE standard for floating-point 
arithmetic will prove to be important. One major disappointment in numerical 
work has been the general lack of progress in designing clean computer arith- 
metic systems. High quality software is supposed to be fail-safe and transport- 
able; it must work properly regardless of quirks in the host arithmetic system. 
Software production is seriously hampered when computer arithmetic violates sim- 
ple arithmetic properties such as 

and 

1.0 j’; x = x 
x :‘E y = y * x, 

x + x = 2.0 ;'e x. 

There exist mainframes of recent design in which each of these properties fails 
for appropriate floating-point X and Y. Woxse yet, on some machines there exist 
floating-point X > 0.0 such that 

or 

1.0 ‘k x = 0.0, 
x + x = 0.0, 

[sqrt(X) I2 = overflow or underflow. 

All these anomalies are traceable to engineering economies [12]. Computer 
designers repeatedly ignore complaints about such mathematical atrocities, and 
new anomalies seem to appear with each new machine. 

That may be changing however. By 1977 technology had advanced to the point 
where small microprocessor manufacturers considered adding floating-point 



arithmetic to their chips. In an unprecedented move they turned to numerical 
analysts for advice. The result was the formation of a special subcommittee of 
the IEEE Computer Society to draft a standard for binary floating-point arith- 
metic. The draft they produced [I] is radically different from existing arith- 
metic systems. Not only is it free of anomalies, but it also contains new 
features specifically requested and designed by numerical analysts with software 
experience. The first chips based on this proposed standard have now appeared 
[29], and the first microcomputers are being delivered [30]. 

These, then, are the milestones leading to where we stand today: the early 
work at isolated computing centers, the establishment of SICNUM, the two Purdue 
Symposia, the establishment of commercial numerical software libraries, the NATS 
project and the EISPACK package, the establishment of IFIP WG 2.5 and of TOMS, 
the BLAs, and the drafting of a standard for floating-point arithmetic. Each of 
these events added something new and important to the movement. There have also 
been some disappointments. We mention in particular the failure to achieve full 
professional recognition fox software work, especially at universities, the 
failure to fully exploit the NATS experience, and the general lack of progress 
in mainframe arithmetic design. 

3. The Present. While the problems we face today are similar to those we faced 
ten years ago, the solutions have become more complicated. We are still con- 
cerned about the production of high-quality transportable software, but we 
expect more from such software now than we did in the past. Therefore it is 
more difficult to produce. 

The last section pointed to many thematic numerical software packages. 
Some such as EISPACK and LINPACK are complete, while others such as MINPACK and 
QUADPACK are still under development. We believe it is significant that most of 
the early SUGCeSS involved linear algebra programs. It is true that linear 
algebra is a fundamental mathematical tool for other problem areas, such as 
optimization and partial differential equations, and that good software for 
these other problems was not likely to be produced until good linear algebra 
programs were ready. But it is also true that linear algebra had reached an 
algorithmic maturity that invited software production. The algorithms were well 
developed, well understood and backed by error analysis that clearly displayed 
the limitations of software implementations, Because the production of EISPACK 
required minimal algorithmic work the producers could concentrate on recasting 
algorithms to enhance desirable software attributes. The effort thus produced a 
significant software package within three years of funding. In contrast, the 
MINPACK effort required about five years to produce its first small package. 
This lengthy development time reflects the difficulty of the task and is likely 
to be typical of future projects. As in many other fields, prominent research- 
ers in optimization do not agree on the best algorithms; new methods frequently 
appear accompanied by confusing claims of superiority over existing methods and 
programs. The situation is common in a vigorous, dynamic research field, but it 
does not encourage the quick production of high-quality software. All the 
'easy' implementations may have been done already. 

Despite these difficulties, we believe that some additional problem areas 
could be harvested for software now. We are frankly puzzled by the lack of an 
effort in ordinary differential equations, for example. Existing algorithms 
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seem to be well enough understood, but no group has emerged with the necessary 
dedication and support, 

There is one other little-understood aspect of successful numerical 
software projects thar: we believe to be important. Part of the variation in 
quality in the numerous PACKS previously mentioned is due to an improper appre- 
ciation of a fundamental lesson from the NATS project, We stated above that 
linear algebra was in a good algorithmic position when the ElSPACK work began. 
That does not mean the field was stagnant, however; new algorithms were being 
introduced. The project deliberately ignored new work because it felt that 
algorithms had to prove themselves before being included. Further, the project 
found that there is a one to two year delay between the completion of the first 
pass at software and its final release. This time is spent iteratively testing, 
revising and documenting to insure that the package does what it claims. Thus 
there must be a one to two year moratorium on the introduction of new material 
into the package. This simple discovery has far-reaching implications. Algo- 
rithmic researchers find it almost impossible to observe such a moratorium; they 
are intent on wide distribution of their latest discoveries. Further, they can- 
not effectively polish software they feel to be inferior. Therefore, control 
over software projects should be vested in individuals who understand and are 
dedicated to software production rather than in individuals who primarily pro- 
duce algorithms. Algorithm producers should be involved in software packaging, 
but they should not control it. 

There is another advantage to this approach. Software packages require a 
uniformity of style to simplify documentation and maintenance. As EISPACK 
demonstrated, different programs may contain large segments of code that can be 
rendered almost identical, e.g., by using similar variable names and identical 
labels. The elements of a package also must adopt a uniform philosophy for 
detecting and reporting errors. The necessary surgery to produce package uni- 
formity is best done by someone with no particular attachment to the original 
programs. 

Aside from algorithmic development, the most difficult problem facing us 
today is testing. There are two fundamentally different reasons for testing, 
hence two fundamentally different approaches, On the one hand algorithm crea- 
tors want to show that their creations are in some way superior to existing 
algorithms, and they approach performance testing as a contest. The tests they 
design specifically highlight whatever advantage the new algorithm may have; 
there is usually no attempt to uncover weaknesses in the algorithm or its imple- 
mentation. 

On the other hand, the selection of software for general use requires com- 
plete performance evaluation. Usually some duplication of purpose is acceptable 
in building a library, for example, so the concern is more with eliminating 
unacceptable programs and in matching programs to problem characteristics than 
in determining the 'best' program. Tests for this purpose should aggressively 
exercise a program in ways that will detect weaknesses, display strengths, 
explore robustness and probe problem-solving ability. We liken this type of 
testing to a physical examination. Inevitably the results of such testing will 
be used to compare programs, but the original intent is that a program be exam- 
ined in isolation to stand or fall on its own merits. 



Designing and implementing test programs is an important numerical problem 
that has been neglected in the rush to produce software for other purposes. 
Software testing locates weaknesses and leads to improvements in the next 
software generation. Yet, except for the ELEFUNT package of transportable For- 
tran test programs for the elementary functions [13] and collections of test 
programs for optimization software 19,381, no thematic test packages exist to 
our knowledge. Some test materials axe distributed with various PACKS mentioned 
earlier, but these are not intended for general use. 

The trouble is that we know little about how to test most types of 
software. Accuracy tests, for example, axe usually battery tests exercising 
programs on someone's haphazard collection of problems. Not only is this time- 
consuming, but there is little purpose behind what is done and the mass of data 
gathered may be incomprehensible even to those who gathered it. We must find a 
better way. We must back off from the problem and critically examine what we 
are doing; every test should have a purpose. We must find understandable and 
useful ways to present test results. (Note in this regard the clever use of 
Chernoff faces [IO] to summarize evaluations of software for solving systems of 
nonlinear equations 1271). 

There are some leads i.n the literature that may prove useful. J. Lyness 
and J. Kaganove show that numerical software falls into two broad classes [34]. 
Class 1 (precision bound) programs implement methods, called 'finite decision 
methods', that guarantee to produce results in a finite number of steps. Ele- 
mentary function programs are examples of class 1 programs. The accuracy 
achieved in class 1 programs usually approaches limits imposed by the computer 
arithmetic system. All other programs are class 2 (heuristic bound) programs 
implementing 'unreliable exact arithmetic algorithms'. The algorithms are such 
that useful results are not guaranteed in a finite number of steps even with 
exact arithmetic. Results that are produced are usually limited in accuracy by 
the algorithm and not by machine arithmetic. Quadrature and optimization pro- 
grams are usually class 2. 

The importance of this classification is that while accuracy test results 
for class 1 programs vary with the operating system, compiler and machine, prop- 
erly structured accuracy tests for class 2 programs produce system-independent 
results when the accuracy achieved is sufficiently above machine limits, Thus 
certain types of accuracy tests for class 2 software need be done only once and 
only on one system. 

But accuracy testing is just part of a complete test package; efficiency 
and robustness are also important. Because class 2 programs frequently require 
user-supplied software with an unpredictable effect on timing, other measures of 
efficiency, such as the number of accesses to the user-supplied program, must be 
used. Where efficiency varies significantly from problem to problem, it is 
important to explore efficiency as a function of the problem space. In its most 
elegant form to date, efficiency testing has been combined with accuracy testing 
and parameterization of a problem space to produce 'performance profiles'* The 
prototype work on automatic quadrature programs [35] produced curves combining 
probability of success and expected number of integrand evaluations as functions 
of requested accuracy for specific paramcterized problem families. Curves for a 
problem family with features similar to those in a particular application should 
be useful in selecting a program for that application based on balancing 
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requested accuracy and predicted cost against the probability of success. The 
concepts of software classification and performance profiles exemplify the 
abstract assault on evaluation procedures that we believe is essential to pro- 
gress in this area. Except for [33], these ideas have not been exploited beyond 
the work cited. 

Concerns for numerical software have spawned important work in other fields 
as well. For example, research on the TAMPR system [6] for automated program 
transformation and maintenance was specifically motivated by early NATS work. 
TAMPR is intended to accept programs in certain standard languages, map them 
into abstract forms, make transformations on these abstract forms, and finally 
recover specific realizations of the transformed programs in standard languages 
again. The transformations are limited conceptually only by our ability to 
describe what must be done, An early version of the system was used to realize 
all versions of the LINPACK programs from complex single precision prototypes, 
for example, This application included enforcing formatting conventions and 
selectively implanting either calls to BLAs routines or inline coding with BLAs 
functionality, depending on the particular target computer host, Ultimately the 
capabilities may include automatic translation from one programming language to 
another by simply specifying different source and target languages in the first 
and last steps. 

TAMPR is only one of many useful tools now under development. The TOOLPACK 
project is working on an extensive collection of software tools specifically 
designed to simplify the writing, testing, analyzing and maintaining of numeri- 
cal software. The package is to combine the capabilities of TAMPR with those of 
formatters like POLISH [lS], static analyzers like DAVE [41] and PFORT [49], 
dynamic analyzers like NEWTON [20], and other as yet unspecified tools including 
text editors. Specification of the package is still incomplete, but there is 
agreement that the package will be portable and that package elements will be 
compatible in data requirements. Release of a prototype version fox evaluation 
and comment is tentatively set for late 1982. 

We earlier mentioned the work of the IEEE on standardization of binary 
float,ing-point arithmetic for microprocessors. That is only one instance of a 
wide concern for computer arithmetic. The IEEE has recently established a 
second subcommittee to draft a radix and format-independent floating-point stan- 
dard that will be upward compatible with the previous effort. Although the new 
draft is again intended for microprocessors, its inclusion of non-binary arith- 
metics should interest designers of larger equipment. 

The fruits of such standardization efforts will not become widely available 
for some time, however. In the meantime we are forced to.write software for 
existing computers. We can improve the portability of software among such 
mach!+nes by explicitly including environmental dependencies in the source code. 
There have been several attempts to establish a fundamental set of parameters 
describing arithmetic systems for this purpose. IFIP WG 2.5 published one pro- 
posal [21] that has proven unsatisfactory in many respects and has not been 
widely used, A second proposal [8] related to Brown's model for floating-point 
arithmetic [7] has received important support in some areas. The entire arith- 
metic model is imbedded in ADA [52], for example, much to the consternation of 
some numerical analysts. We return to that in a moment. Still a third proposal 
is being considered by the ANSI X3J3 Fortran Standards Committee for inclusion 



in the next Fortran standard. This proposal defines certain parameters and 
reserves their names in the same way that SIN is a reserved name. The parameter 
names are then aliases for numerical values appropriate to the particular host 
environment. The difference between this approach and the ADA approach is that 
here only the names are specified; the numerical values provided are implementa- 
tion dependent. While the parameters are based on a model of an arithmetic sys- 
tem, the model is not imposed by the standard, Thus the details of the model 
used in a particular situation can be chosen to fit the circumstances. When 
portability is crucial the model can be chosen to conservatively estimate 
machine parameters; when local performance is important the model can be chosen 
to closely approximate the local system. Such flexibility is not available in 
the ADA approach where the model specified must be conservative to be universal. 

The activities and concerns just outlined are typical of the mathematical 
software effort today. Several large software projects are underway; others are 
planned. There are many ancillary activities aimed at improving the environment 
for software production and use. But there are also difficult problems that are 
not being addressed. We are not making much progress in testing methodology, 
for example. 

4. The Future. Prediction of the future is always risky. Nevertheless we 
present a few guesses at what lies ahcad. We expect that the quantity and qual- 
ity of numerical software will continue to increase and that the activities just 
described will flourish in the future. Advancing technology and even the 
present success of the numerical software effort pose problems that must be 
overcome, however. 

The most significant problem we face plagues every technical field and has 
been with us for a long time - communications at all levels. As we become more 
specialized we lose touch with one another and especially with potential custo- 
mers. 

Good communications with customers is crucial. Superb software is worth- 
less unless software consumers are persuaded to use it. It is not enough to 
make users aware of software existence, though that is a difficult task in 
itself; consumer lethargy must be overcome at the same time. Consumers are 
reluctant to modify running programs unless they are convinced that the software 
they are currently using is inferior enough to endanger their work and that the 
new software will remove that danger. Open literature publications have never 
solved this type of communications problem. The consumers we must reach are 
applications people who do not read numerical analysis or mathematical software 
literature. We must find other ways to reach them. 

Several years ago both the Albuquerque and Livermore branches of Sandia 
Laboratories inserted library monitors in their operating systems [4]. These 
monitors provided information on who was using which routines and on the values 
of certain parameters in the initial calls to those routines. This information 
proved valuable to both the librarians and the users. It led to improvement of 
frequently used programs and provision of new special purpose programs for p.rob- 
lems previously solved with general purpose routines. It also permitted per- 
sonal contact when it appeared that a program was being misused, when Program 
bugs were found, or when better programs became available. Of course, diplomacy 
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and tact were essential in these contacts. In a few cases users objected when 
they :Felt their privacy was being invaded or they did not appreciate proffered 
advice. Sandia Livermore Laboratories augmented personal contact with an 
advertising campaign in which new programs were featured on posters prominently 
placed in all terminal rooms. Such efforts are noteworthy, rare and insuffi- 
cient. 

Today we face a revolution in the way computers are being used. The small 
'personal' computer is becoming common at Argonne, and elsewhere as well, we 
suspect. While it is often acquired for monitoring experiments and gathering 
data, the temptation to use it for numerical purposes is strong. This is espe- 
cially true when the cost of using a central computing facility grows and the 
'free' personal machine would otherwise sit idle. Such usage is not necessarily 
bad, because smaller machines are approaching the hardware capabilities of 
larger machines of only a few years ago. Software is the problem. Owners of 
such machines frequently write their own software or obtain it from friends. In 
this respect they operate as large computing centers used to twenty years ago. 
The software movement has completely lost whatever contact it may have had with 
these users and that contact will be difficult to regain. 

One possibility may be to contribute to the journals many of these people 
read. Byte, Personal Computing and the like are often sources of information 
for such users. While some of the articles in these journals are written by 
highly qualified people, much of the numerical advice is amateurish, reflecting 
techniques that lost favor long ago. We cannot legitimately complain about this 
situation unless we are willing as a profession to provide the proper advice and 
software through these journals. We must be the ones to initiate communica- 
tions. 

Unfortunately, we are also losing whatever communication we had with users 
of the larger machines. Often the original motivation for numerical software 
work was provided by users with applications that were endangered by poor com- 
puter programs. As our effort has matured many of us have become more concerned 
with software production for the sake of production and less concerned about the 
real needs of users. We have tended to communicate among ourselves and to 
neglect the users. Perhaps that behavior pattern is typical of a new field. We 
hope that it will change in our field. 

At the technical level we find challenges posed by new computer hardware. 
We have only begun to work on algorithms and software for parallel and vector 
machines, and now we are faced with microprocessors as well. Their coming is an 
exciting event for numerical software people. The IEEE arithmetic standard pro- 
vides computational capability that was not previously available at any level. 
In addition to sophisticated handling of underflow and overflow, standard- 
conforming systems must provide square root and mod functions, among others, 
that are as accurate as the usual arithmetic operations. Some early implementa- 
tion:; of the standard include square root in the hardware where it becomes no 
more expensive to use than an ordinary division operation. This combination of 
speed and accuracy in square root coupled with other features must influence our 
selection of algorithms. I believe we will see dramatic changes in algorithms, 
software and even computer languages as these new microprocessors become common. 
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Overall we view the future with confidence and expectation. We will prob- 
ably never satisfactorily solve the communications problem, but we expect that 
the quality of numerical software will continue to improve and that software 
production will become easier as new tools and hardware appear. 
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SOFTWARE RELIABILITY ESTIMATION 
THROUGH FITTING A POPULATION PROCESS TO DATA * 

Marc R. Stromberg 
Bell Technical Operations Corporation 

Software/Computer Evaluation Facility 
600 North Garden Avenue 

Sierra Vista, Arizona 85635 

ABSTRACT. Characteristics of software reliability can be stated in terms 
of the mean functions of various transition counting processes associated 
with a birth-death process. 

Many of these counting processes are shown to share the attribute of 
Poisson processes that the higher moment functions can be expressed in 
terms of the mean. 

Such a dependence provides a computational basis for estimation of the 
mean functions, hence of software reliability, by any method (such as 
generalized least squares) which uses only a few moments, 

1. Introduction. Software, unlike hardware, can in principle evolve to per- 
fection through the discovery and removal of error. Large computer programs 
often go through a phase of testing for faults (errors, discrepancies from 
intended function) and concurrent software modification for removal of dis- 
covered faults. Software reliability measurement, if viewed as an estimate 
of the error content of a computer program, must account for both discovery 
and removal of errors, A birth and death process is an appropriate model 
for the discovery and removal process, if the emphasis is on the actl've 
(discovered but not yet removed) faults. 

Active faults arrive through testing a program with "typical" input, 
and depart through the efforts of debuggers to remove them. A population 
process can trace the evolution of software reliability by modeling the 
decline of the active fault population toward eventual extinction. 

To be effective, a model for the active fault population must have the 
properties that it can fit data observed of a particular program, and 
that useful conclusions can be drawn from the model which are not obvious 
from the data. 

This paper considers conditions on the active fault population process 
that allow both fitting the process to data and subsequent computations 
relevant to reliability. 

From data consisting of recorded times of faults and times of repairs, 
the procedure to be described attempts to estimate, among other things, the 
one-dimensional distributions of the count of active faults, 
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2. Notation. X:nxT->En is a stochastic process defined on the 

measure space ~a (with complete probability measure Pr) and on the parameter 

set T=[o,m), with values in euclidean space En. X has random variables 

Xt(*)=X(*,t) and sample functions X,(=)=X(w,=). 

The letters i,j,k represent integers or elements of Ln, the integer 

lattice points of En. 

For jCLn and I C_ T any interval, Hj(1) = /wG~I : wxIC_Xm-l(j) ), 
Hj = I ,$J T Hj(I), md H(1) = jiLnHjCO l 

R represents any irreflexive relation on Ln, and 

HR = (j,k)ER 
U HjnHk* 

Aj(w) = U(1 : wEHj(I)I for jELn, 

A&) = IJjAj (WI): j G support RI , and 
AR(W) = UiAk(W): ke range R) , for w&!R. 

For tcT, Dt is the set of wrn such that the sample function X, has a 
discontinuity at t. 

3. Assumptions. We consider hypotheses on X that are suited both to computing, 
from data, estimates of the one-dimensional distributions of X, and to 
computing distributions of random variables associated with processes 
that enumerate particular discontinuities of the sample functions of X. 

X itself will be a birth-death (or similar) process, with software 
faults corresponding to births and software repairs (fault removals) cor- 
responding to deaths. A fault will be said to be active if software input 
conditions have caused the fault to be executed at least once and it has 
not yet been removed , and activated if the fault is or has been active. 

The sample function value X,(t) is the number of active faults at 
time t. 

Among the counting processes related to X that will be of interest are 
the count of activated faults, the count of repairs, and the count of 
active fault population extinctions (that is, the number of times the only 
active fault is removed). 

X is assumed to satisfy: 

Al. Pr(Dt) = o for all trT; that is, X has no fixed points of discontinuity; 
A2. *ioXw:T->E' is an integer valued step function with unit jump 

for all wun, where ni:En->E1 is the ith projection, l<i<n; -- 
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A3. X is a Markov process, and 

A3.1 there are piecewise right continuous functions qjk(') such that 

pjk(t,u)= qjk(u) (u-t)+o(u-t) 9 jfk 

i l-qjj(u)(u-t)+o(U-t), j-k 

wtwe qjj(u) = kfj c qjk(u) 

for j,kELn, t<u for the Markov transition functions 

pjk(t,U) a Pr lXu=k\Xt=jl ; 

A3.2 P(j,t)bPr IXt=jl is left continuous for all jeLn; and 

A4. Pr(E(t,u)) = o(u-t), where E(t,u) is the set of sample functions with ' 

at least two discontinuities on (t,u). 

We will call X refinable if X satisfies Al through A4. 

4. Properties of a refinable process. To select particular discontinuities 

of X, we define the following processes. For any irreflexive relation 

R on Ln, and sip, define NS:nxT->E1 by NS(w,t) = the number of discon- 

tinuities uc(s,t) of the sample function X,(=) such that (Xw(u-),Xw(u+))cR, 

if t>s; and NS(w,t) = o if t_Fs. 

By Al, NS(=,t) = NS(=,u)+NU(=,t) almost surely for s<u(t. 

For future reference (and to call NS a counting process) we note 

Lemma 1. For y,z~T, y<z, Ny(*,z):e>E1 is a random variable 

measurable on the sample space of [Xt:ts(y,z)l (the a-algebra generated by 

Xii(B) for tc(y,z), Bore1 sets B E En). 

Proof: For r,seT and j,keLn define 

&,(j ,k)= n 
qdr,s) 

Hj[r,q)U Hk(q,S] 

where the intersection is over rational qe(r,s) and where Hj[r,q) = Hj(I) 

for I=[r,q). 

For n>o let Qn be any ordered sequence of rationals rltsl<..*< rn<sn, 

and for irreflexive relation R defining NY let 

A(QnsR)= i& (j ,k)cR 

U Arisi (j , k ) -  



Finally, let Mi (YaZ> = Q gcy z)A(Qn,R) l 

n s 

Then M! (y,z) d iffers from the set Iwcn:Ny(w,z) 2 n/by the set u Dq 

1 q) of measure o. QED. 
w- 

(union over rationa 

Of course, the process NS does not contain more information than X, 
however the following definition is useful. 

Definition. For fixed S~O and irreflexive relation R on L,, the refinement of 

X:nxT->E" (satisfying Al-A4) is %JxT->E"'~ wherey(w,t) 4 

(X(W), N%,t)). 

The following theorem justifies calling ya refinement of X. 

Theorem 1. If X is a refinable prsess, then TaTso is. The transition 
intensities of X are inherited by X, in the sense of Corollary 1.1. 

Proof: The discontinuities of Tw coincide with those of X,, soy satisfies 

Al, A2 and A4. To show A3, interpret "equal" as "equal almost surely", and 

let Y,,k be the characteristic function of the set X, 

the characteristic function of the set \w:NL(w)=n ) . 

-l(k) and let Zi,n be 

For s<t<u, Nz=N$Nt, so 

z:,n = il, ZS,i Zh,n-i= Yu,k Zz,n iS equal to the 

characteristic function of the set ril(k,n). Now Zs,i is measurable on the 

sample space of Nz, and the sample space of Irr:r(tI is equal to the sample 

space Of IXr:rLt) . Therefore, E[Yu,k Zi,nI'jiF:rLt].= 

$, Zs,i E[Yu,k Zi,n-ilXr:r<tl* 
t 

yu,k Zu,n-i is measurable on the sample space of(Xr:r>t/, SO by the Markov 
property of X, 

ECyu,k z~,nl~r:r<tl = izo $,i E[Yu,k Zi,n-iIXtl= 

The last sum is measurable on the sample space of yt and so 

ECYu,k Z~,nl~r:r<tl = ECYu,k Z~'(,nl~tl, 

that is, Pr [G=(k,n)\yr:r<t/ = Pr/ru=(k,n)IK) . 

For t(s<u, E[Yu,k Zi,nlrr:r<t] = E[Y,,k Zz,n]Xr:r<t] as above. 

By the Markov property of X, the last expectation is E[Y,,k Zz,.,lXtl as 

before, which is measurable on the sample space of rt, and the result follows. 
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If 't<uLs, Y,,k Zi,n = o if nil, and 

Ei&,k Z:,,ljT;:r<tl = Ei?,,klXr:r<tl 

= E[Y",klXt] = E[Y",k Zz,olFt] , so yis a Markov process. 

To show A3.2, let At = X;'(j), Bt = yTl(j,n) and P(j,n,t) = Prlq=(j,n)l 

for arbitrary tcT, and jcLk and n an integer, both being fixed 

but arbitrary. , 

By A3.2 Pr(At\A")=qjj(")("-t)P(j,t)+o("-t) for t<", SO i-i; Pr(At\A")=o. 
a- 

Since P(j,t) is left continuous, 

o=$ JP(j,t>-P(j,d 1 

=i$ lPr(At\A")-Pr(A"\At)l and iim- Pr(A"\At)=o. 

Now, Bt\B, c At\A, u Ct," where Ct," = Iw:Xt=j,X"=j,Ns=n,Ni#ni and 

WCt,u)= 
1 
o(u-t), S<” 
0 , t<ug 

by Al, A4 and definition of NS. Therefore, ig Pr(Bt\B")=o and 

similarly for B"\Bt, so {z P(j,n,t) = P(j,n,"j and Tsatisfies A3.2. For 

the proof that ysatisfies A3.1, see Corollary 1.1. QED. 

Corollary 1.1 Suppose X is refinable, 
Then, 

and let Fjk(",t)=Pr[rt-(k,n)(ji;=(j,m)) . 

1. If Scu<t then Fjk(u,t)= 

i 

Pjk(lJ,t)+O(t-U), n=m+l and (j,k)ER or 

n=m and (j,k)$R, 

o( t-u) otherwise. 

2. If U<t<S thenFjk(",t)= Pjk(lJ,t), 

i 

n=m=o, 

0 otherwise. 

Proof: Let A= T;'(j,m), and defineFjk(",t) as required if Pr(A)=o. 

If sLu<t, 

Pr rt=(k,n),T"=(j,m) 
1 

= 
1 J 

Yt,k Z8,ndPr 
A 

= 

/ 
n Zs .E Ah-m) , o<m<n __ , 

A 
igo ",I [Yt,k Zy,n-i lXr:rluIdPr= 

0 otherwise, where 
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A(i)= 
/ A 

E[Yt,k Zl,i lXr:(u]dPr, by the proof of Theorem 1. Since S~U, 

A(i)= 
s A 

Yt,k Z:,idPr=O(t-U) if iL2 by .A4. 

Now, 
/ A 

E[Yt,klXr:rcu]dPr=A(o)+A(l)to(t-u), again by A4, and A(l)=o(t-u) if 

(j,kwR and A(o)=o(t-u) if (j,k) R, by A4 and definition of NS. 

Therefore, since E[Yt,k\X,:r(ul=Pr 

Pr /Xt=(k,n),%(j,m)/ = 
I 

Xt=k(X,=j 
1 

a.e. on A, 

* f 

Pr Xt=k(X,=j 
I I 

Pr 
lu $1 
r=(j m) +o(t-u), if n-m=1 and (j,k)cR or 

n-m=o and (j,k)$R , 

o( t-u) otherwise, 
\ 

and the conclusion follows. 

If u<t(s, Pr G=(k,n),Fu=(j,m) 
I 1 

=o, if m>o or n>o. For n=o, the result is 

immediate. QED, 

The following definition is useful for application of the theorem. 

Definition. The irreflexive relation R is an attachment of the process X if 

for almost all WGHR there is (j,k)gR such that 

SUP Aj(w)=sup &(w)=inf &(W)=inf A&,‘). 

Lemma 2. If R is an attachment of the refinable process X, then for almost 
all WGHR there is a unique discontinuity t of Xw such that (X,(t-),X,(t+))cR. 

Proof: t=SUp &(W)'=inf &(w). QED. 

If R is an attachment of X, define HR(t,u)= U XT'(j)nXi'(k) 
(j ,kkR 

for t<u, and define ?R:HR-->T by qR(W)=inf $(w). Then 

Lemma 3. If R is an attachment, VR E(t,u) for almost all wsHR(t,u). 

Proof: HR(t,U) C_ HRUDtUD,, and t<sup h(w) and u>inf KR(W) for wcD@Du. 

QED. 

t7R induces a real Bore1 measure pi defined by uR(E)=pr(qil(E)) for 

Bore1 sets E C_ T. 

The cumulative distribution function of pR, FR, defined by FR(t)?pR([o,t)), 

Satisfies FR(u)-FR(t)=&t,u) for t<u by Al. By A4, Pr(HR(t,u>)=FR(u)-FR(t)+o(u-t) 
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and therefore, 

Proposition 1. If R is a finite attachment, then F;(u)= C qjk(U)P(j,U) 
(j ,kkR 

for 

all but finitely many u>o. 

Proof. Fyi(u) exists if and only if the two sided limits lim Pr(H (t u)) and 
t+u- ++- 

;$+ Pr(HRh,t)) exist and are equal. 
K-U 

Since Pr(HR(t,u))= C 
(j ,k)ER 

Pr {X,=klXt=j} Pr {Xt=j} 

= c qjk(U)P(U,j)+O(U-t), the conclusion follows by A3.1 and A3.2. QED. 
(j ,W 

If R is a relation on Lm, define Rn as the relation ((jn,kn+l):osR) on Lm+I 

where jn is the element of Lm+l with m+l st coordinate n and which coincides 

with j on Lm. Then 

Lemma 4. If X:nxT->E" is refinable, then for fixed slo and irreflexive 

relation R on Lm, Rn is an attachment of7 for every nlo. 

Proof: -- Let S=q$TDq where q is rational, and choose WGHR,\S and rational 

r,t with I-e&,(w) and t&xR,(w). 

Then r<t since NS(w,t)>NS(w,r). Arbitrary choice of r,t then shows 

SUP h,,(W) 5 inf ?iR,.,(W). 

Since W#DrUDt, there is uE(r,t) with (X,(u-), X,(U+))ER. By selection 

of r and t, u necessarily satisfies (G(u-), rw(u+))CRn, and 

ULSUp $.,(W)pf $.,(W)(U. QED. 

Simplifying the notations for HR, and 'lR, to Hn and Vn, define nn:Hn-->T as 

done following Lemma 2, with induced measure pn and distribution 

functions Fn. Note that the sets 
C 

w:NS(w,t)2n+l and VnI([o,t)) are equal 

almost surely so that 
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Lemma 5. 

Proposition 2. For s>o and finite irreflexive relation R on 

of the refinable process X, if gjk is a right continuous rea 

(j ,k)O, then 

the state space 

1 function for 

ECNtI=[t (j k)CRojk(U)P(j,U)du for tLs. 
, 6 

Proof: 

F;(u)= 

Let P(j,n,t)=Pr {Xt=jn} . Then by Proposition 1, Lemma 4, and Theorem 1, 

(j ,k)~R9jkhP(j dLu) for U>s= 

F;(s)=0 for nil and the right hand derivative of F, at s is the upper 

derivative &I,(S) of p. at s with respect to open segments, with 

Q.&)= (j,k)~Rqjk(s)P(jsO,s) l 

Since&n is finite everywhere for nLo, un is absolutely continuous with 

respect to Lebesgue measure for n>o and 

Fn (t >= 

Then 
ECQI= ,f,Fn(t)= 

J 

t 
c qjk(U)P(j,U)dU by Lemma 5. QED. 

s (Lk)~R 

For the next lemma, the following notation will be used. If Ri is 

any collection of relations on the state space of X letqn,i 
{ > 

"Ri(n)'HRi(n)-'T 

for the process 5 defined via Ri, n and s as done previously, following 

Proposition 1. Use '?n,i to induce Bore1 measures pn,i and pi= c pn,i 9 
n>o 

let Fn,i(t) and Fi(t) be the distribution functions for pn i and pi 

respectively, and let Nt,i be the counting process associaied with Xi. 

Then 

Lennna 6. If Rl & R2 C . . . is an ascending chain of relations whose union 

is R, then lim E[NS 
i+cm 

t,i]= E[Ni] where Nz is the process defined via R and s. 

Proof: Let Mn,i(Y,z)= 
Qn F (y,z)A(Qn*Ri)* 
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as defined for Lemma 1, and check that 

-1 . Mn,i(Y,Z) C_ M n,j(y,Z) if Ri C_ Rj for n,l, and 

2. Mn(Y,Z)= iyl Mn,i (Y,Z) where Mn(Y,z) = 
Qn F (Y,z) 

A(Qn,R)* 

Let Bl,n=Mn,l(s,t) and 

Bi,n=Mn,i(S,t)-Mn,i-l(s,t) for i)2, ,nkl, 

and note that 
ikl Pr(R-i ,n)=Pr(%,k(S,t)) = l-W-l,k[S,t) l 

Then EINz]=n$o un[S,t)=nto iFIPr(Bi,n+l)=iE ,,Fo Wt,k[S$t) 
- - 

=;z Fk(t)=$-iI$ E[N;,k] . QED. 

Corollary 2.1 If R is any irreflexive relation on the state space of X and 

qjk is a right continuous real valued function for (j,k)s R, then 

E[Nf] = J t C qjk(U)P(j,U)dU for t>S l 

s (j,k) R  

Proof: Assume R infinite and let RlCR&.,. be an ascending chain of - 
finite relations whose union is R. 

Then Propo;ition 2 gives 

E[Nz,i]=JS gi(u)du 

where gi(u)= C qjk(u)P(j,u) 
(Lk) Ri 

. 

Now :, is a monotone sequence with 

Situ) --) (j ,k$Rqjk(U)P(j ,U) and SO 

I' gi(u)du -> jt C qjk(u)P(j,U)du 
s (LkkR 

by monotone 

convergence. But Jt gi(u)du ->E[Nt] by Lemma 6. QED. 
S 
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Corollary 2.2 Under the hypotheses of Corollary 2.1, the distribution 

function for 'In satisfies 

Proof: The proof of Lemma 6 includes the fact that 

PnCS,t)=~~m Pn,k[S,t)z~~ 
m 

Fn,k(t) 

The argument of corollary 2.1 shows this limit to be 

/ 

t 
s (j,k)~Rqjk(u)P(j,n,u)du. 

Generating equations. We will now use the previous results to develop 

expressions for higher moments of the randan variables Ns defined for 

particular s)o and irreflexive relation R on Lk, for a refinable process 

X:nxT->Ek. 

If jsLk, let j(r) be the rth integer coordinate of j and let 

A(j)={isLk:max { Ii(r)-j(r)(:l<r(k)=l} be the lattice points adjacent to j. 

By A2, A3.1, and A4, 
k&H 

Pjk(U,t)=o(t-U) for t>U. 

Corollary 1.1 then gives the following cases. 
If s<utt, 

(1) P(j,n,t)=Pjj(u.t)P(j,n,u)+ (i ,j)&Pi j(u,t)P(i ,nd)+ 

and 

(i,j)ZRPij(U.t)P(i,n-l,u)+o(t-u), n>o, 

P(j,O,t)=Pjj(u,t)P(j,o,u)+ (i ,j)$RPi j(u,t)P(i sO,U)+O(t-U) g 

If u<tjs, 

(2) P(j,n,t)=o , n>o and 

P(j,O,t)=Pjj(U,t)P(j,O,U)+i:A(j~Pij(U,t)P(i,O,U)+o(t-U)= 

All of the above sums can be assumed to be finite. 

Equations (1) and (2) give the following derivatives, using -+ and - to 

denote right- and left-hand derivatives, respectively, where qij and 

P(j,n,*) satisfy appropriate continuity conditions. 

(3) If OS, 
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P’(j,n,t)=-qjj(t)P(j,n,t)+ (i,j)&(Jij(t)P(i,n,t)+(i,j)E~ C qij(t)P(i,n-1,t) , n>o , 

(4) If t=s, 
P'(j,n,s)=o , n>l, 

P%,lAt= (i,j)iRqij(s)P(i,o,s), 

P'(j,l,s),=o , 

P'(j,o,s)t= -Sjj(S)P(j ,O,S)+ (i ,jldRqi j(S)P(i ~0,s) Y 

P'(j,o,s),= -q-J-J(S)P(j,O,S)+ C iE:A( j)qij(S)P(i ,O,S>; 

(5) If t<s, 
P'(j,n,t)=o , n>o, 

P'(j,o,t>= -qjj(t)P(j,o,t)+i~Ao qi j(t)P(i , O , t )  l 

For jgLk, define G(j,x,t)= EoxnP(j,n,t), 1x1(1, so that 

G(x,t)= c 
M-k 

G(j,x,t) is the probability generating function for the 

random variable Nz. Then 

Proposition 3. If qij(t) are bounded functions for i,jgLk, then 

(6) $(j ,W)= -qjj(t)G(j yX,t)+(i j)jRqij(tIG(i ,X,t) 
Y 

“‘(i ,J’kR c qij(t)G(i,x,t) , for Ixlcl, t?S. 

Proof: For fixed x<l, boundedness of the qij(t) implies uniform convergence 

Of ,FoxnP'(j,n,t) 

= -Cljj(t)P(j ,O,t)+ (i ,do qij(t)P(i ,O,t) 

+nF1 xnC-qjj(t)P(j,n,t)+(i j)gRqij(t)P(i,n,t) 
Y 
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+(i ,jkR C qij(t)P(i,n-l,t)l, from (3) and (4). 

The left side of the equation is therefore +& G(j,x,t). 

Absolute convergence is also guaranteed by ?l ipothesis, and the right side 

can be rearranged to give (6). For x=1, (6) is an application of A3.1, A3.2, 

and A4. QED. 

Equations (6) will be called the generating equations. 

Now ., 

(7) G(x,t)= n;oxnPr {N:=n} and for tls, 

(8) n>co x" $Pr(Nz=n}=-Fb(t)+,:,xn(F,!,-I(t)-F;(t)) 

= n;. x” CJ C qij(t)P(i,n-1,t) 
sLk(i ,j@R 

+(i ,3')4R 
1 qij(t)P(i ,n,t)-qjj(t)P(j,n,t)l, 

applying (3) and (4) and interpreting derivatives as right hand derivatives 
at s. 

The proof of Proposition 2 shows that (F,!,,I(t)-F;(t)152 2 EC@, 

so if the latter quantity is a bounded function, the result of term by 

term differentiation of (7) with respect to t is uniformly and absolutely 

convergent for any Ixl<l. If the functions qij(t) are also bounded, then 

application of (6) and rearrangement of (8) show that 

&x,t)= c %j,x,t), Ixl<l. 
jCLk at 

Finally, we can apply a power series argument to (8) and conclude 

Lemma 7. If .c 
Jdk 

qjj(t)P(j,t) is a bounded function, 

then 

i+l i+l 
(9) L(x,t)= c 

M-k 
d-c(j,x,t) for Ixl<l,ilp. 

ax fat axiat 
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Proof: The hypothesis guarantees the preceding argument, since the conclu- 

sion of Proposition 3 is true under this condition also. QED. 
We are finally in a position to formally develop moments of the random 

variables Ns. 

Differentiating the generating equations (6) with respect to x and sum- 

ming over Lk produces, applying (g), 
1 

a2 --G(x,t)= C 
ax at jcLk 

C-qjj(t&G(j,X,t)+ c 
iGA(j) 

9i j(t) $ G(i ,x,t>l 

+(x-l) c C 
jcLk(i ,j)cR 

G(i ,x,t) 

The first sum over Lk is zero by A3.1. Integrating, we get 

& G(x,t)=(x-1) 
/ 

t 
C qij(U) $- 

s (i ,jkR 
G(i,x,u)du 

J 

t 
+ s (i,j)~Rqij(U)G(i,x,u)du. 

An application of dominated convergence then gives 

which is a restatement of Corollary 2.1. 
We can apply the same procedure to find 

a2 
/ 

t 2 

iis- 
G(x,t)=(x-1) s (i,j)iR qij(u)&- G(i,w)du 

/ 

t 
+2 s .(i,j)~Rqij(U) $ G(i,x,u)du , so 

where by Proposition 3., Qs (j ,t )=iiT aG(j,x,t) for jgLk satisfies 
- ax 
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(11) Q&t)‘= -qjj(t)Qs(j st)+iJA( j)qij(t)Qs(i ,t) 

+ (i ,j)tRqi j(t)P(i ,t) 

with initial conditions Q,(j,s)=o, for j6Lk, tLs. 
We therefore have 

Proposition 4. If .C 
J+ 

qjj(t)P(j,t) is a bounded function 

for t>s, then Cov(Nz, N~)=E[N~]-E[N~]E[N~] + K(o,s)+K(o,t)-K(s,t) 

/ 

Y 
where K(x,y)= x (i,j)~,qijOax(i,u)du 

and where Qx(jv;t) satisfies (11) (for s=x). 

Proof: for o<s<t, -- 

Var[Nz] = 

by properties of probability generating functions. Also, since Nt=NztNz 

almost surely, Cov(N~,N~)=(Var[N~J+Var[N!J-Var[Nz])/2, 

and the result follows from (10). QED. 

Application. If X is a birth-death process whose sample functions give the 
number of active faults in software as functions of time, then the one dimen- 
sional discrete distributions of X can-be computed by solving the system of 
equations (6) for x=1. The system is 

(12) WLt>= -qjj(t)P(j,t)+ i~Afjjqij(t)P(i,tl Jlo, 

with initial conditions P(i,o)=o, i,l, and P(o,o)=l, where the states of X 
are the non-negative integers, 

The solution of (12) requires that the intensity functions qi *(t) be 
specified. The results above can be used to generate estimates o $ 
and ultimately of the distributions P(i,t), tip, ilo 

1 

the qij(t) 
under hypotheses on 

the qij(t) l 

For example, assume that 

(13) qij(t)=x(t) for all pairs (i,j) with ilp and i=j-1, so that the 
intensity of transitions corresponding to faults activations is a function 
of time but not of state. Then u 

A(u)P(i,u)du 
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/ 

#t. 

E a(u)du, where Ne is the random variable for the count of 
0 

activated faults, by Corollary 2.1. 

Denoting E[NF] as a function of time by F(t), we have 

(15) a(t) = F'(t). 

Therefore, if the mean function of the activated fault counting process, 
F(t), were known, we would know the intensity functions for fault activation. 

Similarly, if R(t) is the mean function for the repair counting process, 
then by Corollary 2.1, 

ui(u)P(i,u)du 

where pi(t) is the intensity function for transitions from a state of i 
active faults to a state of i-l active faults, for ikl. 

If we assume that there is a finite number, K, of debuggers making 
repairs and that therefore the intensities ui(t) satisfy 

(17) pi(t) = iv(t) 
Ku(t) 

, ix 
, i>K 

for some function of time p(t), then (12) becomes 

/ 
t 

Q’,;’ R(t) = 
0 

p(u)[K+i!o(i-K)P(i,u)]du = 

(19) dt) = R'(t)/(K+ iio(i-K)P(i,t)). 

Assuming (13) and (17), we could solve the system (12) for the distri- 
butions of the active fault count if only we knew the mean functions F(t) 
and R(t) for the counting processes of activated faults and of repairs. 

For purposes of estimation, one may as well assume, given (13), that 
F(t) is the mean function of a Poisson process. An estimate of F(t) could 
then be determined by well known methods. We therefore will consider a 
method of estimating R(t). 

The counting process for software repairs will almost certainly have 
correlated increments, especially if K is finite in (17), and a likelihood 
function for estimation of R(t) will be difficult if not impossible to give 
expression in closed form. A next best procedure for estimating R(t) is 
to take advantage of the first two moments of the repair counting process, 
and to match moments with a Normal process. 

To estimate R(t) we then want to minimize an expression of the form 
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(20) i ,j& (Ci-R(ti > )Vij (Cj-R(tj) > 

where Ci is a count of repairs made prior to ti, i=l;...,M, and where 

Vij is an entry of the covariance matrix [COV(N~i' Ntoj)l 
of the repair counting process. 

Proposition 4 suggests an iterative scheme for the estimation of R(t) 

by minimizing (20). He assume that an estimate of R(t) can be made by 

estimating a vector of parameters (al,a2,...,an)=F upon which R(t) 

depends. For practical purposes, the scheme then takes the following form. 
(1) (1) Given an initial estimate (al ,a2 (1))=&) ,...,an and assuming an 

estimate of F(t), apply (13), (15), (17), and (19) to compute the solution of 

(12). Next, apply Corollary 1.1, computing solutions of (ll), and apply 

Proposition 4 to compute an estimate of V, the covariance matrix of the 

repair counting process. 

Minimize (20) for this V for a new estimate (a1 ,a2 (2) (2!eeea(2))z$2), and 

A> finally, generate a sequence a 
1 1 

n (i+l) of parameter vectors, with ?i 
-(iI generated from 01 as A2) was generated from ?i (1)* 

If the sequence { I 5 U> is convergent then we will have succeeded in 

estimating R(t) by matching the first two moments of the repair counting 

process with a Normal process. Note: the sequence a 
{ 1 

-(iI may converge 

slowly. In practice therefore, the sequence is subjected to a Steffensen 

acceleration. For every n+2 elements of the sequence 
1 > 

$1 , an approximate 

Jacobian matrix is constructed using finite differences, etc., and an element 

B of the accelerated sequence of parameter vectors is generated which 

becanes the starting vector of a new F (i) sequence. In addition, to 

save computer time, elements of the z (i) sequence are not required 

to actually minimize (20) for various V but only to be terminal elements of 

a truncated sequence of iterates in an attempt to minimize (20) by a Newton- 

Raphson method. Finally, it is some ~that, at convergence, is tested 

as a minimum of (20). 

Given estimates of the mean functions F(t) and R(t), the intensities qij(t) 
in (12) can in principle be computed. By Theorem l., we may then refine 
the process X by various transition counting processes and compute various 
quantities pertinent to software reliability. For the following applica- 
tions, we assume X to be a refinable process, and that some method such as 
outlined above has been used to generate estimates of F(t), R(t), and the qij(t). 
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Distribution of Time to Next Repair 

For s>o, we may consider the process {Nz, tlof counting the number of 

‘repair transitions subsequent to time s. We count repairs via the relation 

(i,i-l), i,l 
> 

and define the process {N:,tko} accordingly. 

Corollary 2.2 then states that 

(21) F,(t) pi(u)P(M,u)du, 

where F,(t) is the distribution function for time to the n+l st repair 

occurring after time s, where the intensity functions ui(t) are precisely 

the same as in (16) for t>s, and where the P(i,n,t) satisfy the system of 

equations under (3), (4) and (5) above, with the intensities in (12). In 

particular, the P(i,n,t) satisfy the system 

(22Jl P'(i,n,t)=pi+l(t)P(i+l,n-l,t)+xi_l(t)P(i-l,n,t) 

-(ui(t)+Xi(t))P(i,n,t), n>o,i>o, 

P'(o,n,t)=~l(t)P(l,n-l,t)-Ao(t)P(o,n,t), n>o, 

P'(i,o,t)=hi-l(t)P(i-l,o,t)-(~i(t)+~i(t))P(i,o,t), i>o, and 

P~(O,O,t)=-Xo(t)P(o,o~t), for tls, 

with initial conditions 

(23) P(i,n,s)=o, n>o, ilo, 

P(i,o,s)=P(i,s), ilo. 

In case n=o in (21) we need only solve equations of (22) for n=o, that 

is, independently of solutions of (22) for n>o. 

Distributions of Time to Last Repair and Time to Last Fault 

The probability P(s), that there are no repa irs in (s,m) is, from (21 
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with n=o 

OD (24) P(S) = l- 
/ 

C pi(u)Qs(i,u)du, 
s i,l 

where Qs(i,t) 4 P(i,o,t) of the system (22) with Qs(i,s)=P(i,s), 

We can re-write (24) as 

(25) P(s) = lim 
t+ m iF0 Qs - 

(i,t), and therefore the conditional 

distribution of time to last repair as 

(26) D(t) = P(t)-P(o) . 

1 - p(o) 

In the case K=- in (17) and assuming (13) so the increments of the 

repair counting process are Poisson distributed, 

(27) Q,(i,t) = (F(t)-R(t))ieR(S)-F(t) , 

i! 

and D(t) becomes 

(28) D(t) = eR(t)-R(m) -,-R(m) . 

l-e-R(m) 
Similar arguments show that the time-to-last-fault distribution is given 

by (28), with F in place of R, assuming (13). 

We may similarly show that the conditional distribution of time to nth 
from last fault is 

(29 > Dn(t > J( 
F(-) 

uneeudu 
FZ F -)-F(t) l 

/  

F(m) 
unemudu 

0 

Distribution of Time to Next Extinction 

The distribution of time to n+l st transition after time s from one state 
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of the active fault process to an adjacent state is, by Corollary 2.2, 

/ 

t 
(30) F,(t) = oij(u)P(i,n,u)du. 

s 

The distribution of time to next extinction of the active fault population 
is of particular interest in relation to software reliability. By (30), 
this distribution is 

/ 

t 
(31) F,(t) = ulhP(Lo,u)du, 

where, by (3),'(4) and (5), P(i,o,t) satisfies 

(32) P'(i,o,t)=ui+l(t)P(i+l,o,t)+xi,l(t)P(i-l,o,t) 

-(Vi (t>+Aj W >P(i ,O,t), 1% 

P'(o,o,t)=-Xo(t)P(O,O,t), 

with P(i,o,s)=P(i,s) for ilp. 

The functions vi(t), izl and xi(t), iLo are exactly the Same as for equation 

(12), for 0s. 

Covariance Function of the active Fault Count 

Define relations A= (i,i+l), ilo 

Qs(i,t) be the solutions of (11) for 

, C=AUB, and let 

(11) for R=B, and similarly define &(i,t) for R=C, for iLo, ols<t. 

/ 

Y 
Let K(x,y)= C' 

x (iA) A 
qij(u)Qx(i ,U)dU, 

%y)= 
/ 

Y - . 
x (i ,j.)EBqij(u)Qx(J ru)dU, and 

define t(x,y) analogously. 

Let J(x,y)=2K(x,y)+2E(x,y)-z(x,y), and set Dx(i,y)=2Qx(i,y)-~x(i;y) 

for iLo, 412x. Observe that Dx(i,y)=[x(i,y)-2&(i,y), applying (11). 

/ 

Y 
Then J(x,y)= c (Xi(u)-ui(u))Dx(i,u)du 

x ilo 
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where Xi(t)=qij(t) for (i,j)EA and pi(t 1: 

Next, write J(o,x)+J(o,y)-J(x,y) 

PV 

= PJ(o,x)+ d J c (Ai (U)-ui (u)) (Do(i ,u)-Dx 
x ilp 

(i,u))du, and note that 

=qij(t) for (i,j)EB and where po(t)=o. 

D,(i,t)=iP(i,t) , tip, ilp by considering D,(i,t)/P(i,t) as a conditional 

expectation or by application of (Yl), and that F.(i,t) e Do(i,t)-D,(i,t) 

satisfies (12) for ilo, tls with initial conditions Fs(i,s)=iP(i,s), ilp. 

Therefore, J(o,x)+J(o,y)-J(x,y)=2J(o,x)+if,iO,(i,y)-i~li2P(i,x). 

Associating counting processes 

{ 
N$$, tlo 

) 

{NF, t2n),j$, tip) aid 

with relations A, B, and C above, we apply simple 

properties of covariances to conclude 

cov Us&) = 2 Cov (N&N;)*2 Cov (g, $) 

-Cov( N;t$, Nf+@ 

where Xt=Ni-?;i as usual. 

Applying Proposition 4 and some algebra, 

Cov(X,,Xt) = F(s)+R(s)-(F(t)-R(t))(F(s)-R(s))+ Jb,s)+Jb,tbJ(s,t) , t?s, 
from which ifli2P(i,s)=2J(o,s)+F(s)+R(s). 

Using the calculations above, we get 

(33) Cov (Xs,Xt)=i,ZIi&(i,t)-F(t)-R(t))(F(s)-R(s)). 

Finally, we conclude 

Proposition 5. If X is a refinable process and #Xi(t)+ui(t))P(i,t) is a 

bounded function, then for t>s, - 

(34) Cov (Xs,Xt)=i&iDs(Lt) 
where D,(i,t) satisfies equations (12) for ilp, t?s, with initial condi- 

tions D,(i,s)=(i-F(s)+R(s))P(i,s), ilo. 

Proof: Observe that (F(t)-R(t)(F(s)-R(s)) =.c i(F(s)-R(s))P(i,t) and 

that D,(i,t) i rs(i,t)-(F(s)-R(s))P(i,t) sat%y (12). Apply (33). QED. 

Corollary 5.1. Assume (13) above and that K=m in (19). Then 
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/ 

t 
p(u)du 

s 
Cov(Xs,Xt)=(F(s)-R(s))e- ) for t2s, 

where p(t)=R'(t)/(F(t)-R(t)). 

Proof: -- Assuming the limiting case of (19), we have yi(t)=ip(t) for iLo, I 
with p(t) as stated. Let Z(t)=i$IiDS(i,t) where Ds(i,t) is as in Proposition 5. 

Then from (12), 

c (Xi(u)-~i(u)>Ds(i,u>du 

/ 

t 
= C- u(u)f(u)du, where C is a constant, so Z'(t)=-u(t)Z(t), tis, 

S 

/ 

t 
Therefore, dub 

S 
Z(t)=(F(s)-R(s))e- , 

solving the differential equation, and using Z(s)=F(s)-R(s). QED. 

6, Summary. By requiring the active fault count process X to satisfy appro- 
priate conditions, we can estimate the mean functions of the counting 
processes for activated faults and for software repairs, as long as the 
estimation uses only a few moments of the distributions of these processes. 
The same conditions can then be used .to restate the differential equations 
for the one-dimensional densities of X in terms of the above mean 
functions, and secondly to state the differential equations and initial 
conditions for computation of distributions such as time to next repair, 
time to next fault, time to next extinction of the active fault popula- 
tion, etc., that are important to estimating software reliability. 

If the active fault count process is assumed to be a refinable process, 
then the process can be refined by counting selected transitions occurring 
after a given time s. 

The appromiate choice of refinement can be used to develop higher 
moments of the activated fault or repair counting process, resulting in 
an iterative scheme for estimating the mean functions of these counting 
processes, or to develop distribution functions of random variables in- 
teresting from the perspective of software reliability. Since a refine- 
ment of a refinable process is itself refinable, one can even develop 
expressions for such quantities as the distribution of time to first 
repair subsequent to first extinction, etc. 

A computer program in FORTRAN has been written by this author that takes 
as input the times of software faults and times of software repairs hnd per- 
forms the cwnputations outlined above. The program assumes (13) and (17) for 
estimating the fault counting process mean function and the repair 
counting process mean function, is capable of estimating F(t) by max- 
imization of a Poisson likelihood function and of estimating R(t) for 
a finite number of debuggers by minimization of (20) under the constraint 
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that the covariance function satisfies Proposition 4. 

The program operates as follows. Interval counts of activated faults 
are formed at selected times from data and a Poisson mean function is 
estimated via maximization of a likelihood function. Following this, 
interval counts of repairs are made, forming the Ci of (20). Next, the 
iterative scheme for minimization of (ZO), applying Proposition 4, is 
performed. As a by-product of this minimization values of P(t), 
satisfying (19), and P(i,t), t?o, i>o, satisfying (12) are computed. 
When the iteration converges, these values are retained; the P(t) are 
subsequently used for the solution of systems such as (22) and (32) above, 
and the distributions {P(i,tj), ilo\ for various tj are used to establish 
initial conditions for solution of these systems. Computations involving 
various distribution functions, applying Corollary 2.2 for various sip, are 
then made, 

As a result, the program is also capable of producing values of the 
following (as functions of time, at various times): conditional mean and 
standard deviation of time to next fault, mean cumulative activated faults, 
mean cumulative repairs, the probability that the number of faults remaining 
to be activated is at most N (for various N), the probability that no new 
faults will be activated for an interval of length L (for various L), mean 
and standard deviation of the count of entries (via repair) of a state of 
N active faults (for various N), mean and standard deviation of the con- 
ditional distribution of time to next entry (via repair) of a state of N 
active faults (for various N), and the discrete distribution of the active 
fault count. 
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ABSTRACT. Methods of software reliability estimation have been applied to 
data collected on two large software development projects. 

Characteristics of software reliability have been derived through ap- 
plication of population process techniques to software failure and repair 
data. They include the following: mean time between events (faults/ 
repairs), mean time to next fault, number of faults remaining (to be dis- 
covered), length of successful mission, and time to last fault. 

The results of the application demonstrate the feasibility of the ap- 
proach. The characteristics provide a basis for judgement of the quality and 
maturity of software. 

1. Introduction. A computer program has been developed for estimating 
software reliability characteristics using the mean functions of transition 
counting processes associated with a birth-death process. Data on fault dis- 
covery and repair rates for two large software development projects were an- 
alyzed with this program; the results are presented here. 

The first data used were published (1) for a large software development 
project, referred to here as System A, at the completion of the test phase. 
These data are presented in histogram form for faults and repairs as two sets 
of event counts within each of 18 time units of equal length. 

The second data analyzed, designated as System B, were collected on a 
software development project during the middle testing phase. These data con- 
sist of fault discovery times and repair installation times, where the time 
unit used in the analysis is months of operation time at event occur- 
rence. 

For each set of data, mean functions of fault and repair counting proces- 
ses were developed by assuming a parametric form and fitting the data for 
parameter estimation, The counting process mean functions were then used to 
develop estimates of six software reliability characteristics: 

(1) D. K. Lloyd and M. Lipow, Reliability: Management, Methods, and Mathemat- 
ics (Second Edition}, p. 519; Redondo Reach, CA, 1977. 

---- 
* Sponsored by the llnited States Amy under Contract No. DAEA18-77-C-0134. 
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tkan Time f:ctwtacn Events (MTBF, KTIIR) 

The instantaneous mean time between faults at time t is the reciprocal of 
the derivative of the mean number of faults activated per unit time at time t. 
Similarly, the instantaneous mean time between repairs at time t is the re- 
ciorocal of the derivative of the mean number of repairs installed per unit 
- - r~ ~~ 

time at time t. This basic estimate leaves the variation of the estimate 
knoin and, taken alone, is easily misinterpreted. 

Mean Time to Next Fault 

If a growth in reliability is to occur, it is reasonable to hope that 
appearance of new faults is less than certain and that the probability of 
faults will decrease. Therefore, we consider the distribution of time to 
fault conditioned on the event that a next fault occurs. 

Number of Faults Remaining 

After the fault mean function is estimated, the expectation of number 
faults not yet activated after a time tl is F(-)-F(tl). This infor- 

' mation is presented as the probability that the number of faults to be 
activated after time t is at most N, for selected values of N. 

Lenqth of Successful Mission 

The reliability of software can be expressed in a useful way as the 

un- 

the 
new 
next 

, 
of 

probability that the software will function under typical input conditions for 
a specific length of time without the appearance of new faults. The input 
conditions must be assumed to be equivalent to the test conditions with re- 
spect only to data input. 

Time to Last Fault 

An estimate useful for management of the test cycle is an estimate of the 
time to bring software to a given level of competence. The distribution of 
time until last fault activation also serves as a lower bound on the time to 
1 ast repair estimate. This estimate is presented as the mean time to last 
fault snd a table of probabilities that the last fault has been activated 
prier- to given times. 

2. /.pplicat,ion. ssumed to be that of a The Fau't Mcan Function wa_q, ,,ith this form the Poisson 
procr,:s with the parametric form F(t)=a(l-e 
expectation of total fault activations is F(=)=a: The parameters'8 and p de- 
termine F(t) as the product of a bleibull distribution and a constant. 

For System A, the fault mean function was estimated by two methods; max- 
imization of a Poisson likelihood function and by generalized least squares. 
Each method yielded the same parametric estimates, below to SIX place ac- 
curacy, for both systms, 

*For clarification: F(t) = a(1 - exp[-BtP]). 
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I System A B 
I 

a- 764.704 898.903 
8" .094 9.259 
PE 1.183 3,273 

For System A, Figure 1 presents the Fault Mean Function with one standard de- 
,viation bounds plotted versus observations. Examination shows that each ob- 
servation unit fell at or within one.standard deviation. 

Figure 2 presents the same plot for System B. Examination shows that the 
fit was not as good for System B, with a third of the observations at or 
slightly exceeding one standard deviation from the mean. 

The Repair Mean Function form was selected to constrain the eventual mean 
total count of repairs to equal the eventual mean total count of faults. The 
form also satisfies the constraint that the fault mean be an upper bound for 
$eerg@irxmean at all times. The forms of R(r) = Fjt)x, 

) for System A,and R(t) defined via R (t)=p e-B t(F(t)-R(t)) 
for System B meet the desired constraints and are convenient, as both have 
easily computed values and depend on only two parameters. For both System A 
and B, the repair counting process mean function was estimated by the 
generalized least squares method resulting in the following parameter 
estimates. 

I System A B 
I 

B’ .151 .169 
P’ 1.029587 15,331 

For System A, Figure 3 presents the Repair Wan Function with one standard 
deviation bounds plotted versus observations,. The mean function deviates 
greatly from the data in interval 12 where nearly 100 repairs were installed 
within one interval. At interval 15 the data and mean function again coin- 
cide. This type of data discontinufty is not unexpected in repair rates as it 
is common practice to accumulate corrections and install them at a convenient 
time. 

For System B, Figure 4 shows a more consistent repair installation rate 
during the represented phase of testing. 

The instantaneous MTBF of System A, listed as a function of 40 time units 
in Figure 5, shows a steady increase throughout the 18 time units of test, 
with a projected dramatic increase if the test and repair phase had continued 
for 40 units. The MTTR rcmaincd relatively stable through the testing inter- 

*For cla ification. 
previouefy determi&d. R(t) - F(t)(l - exp[-BptP']). We assume that F(t) has,been 

43 



l 

: ! 

,” 
A 

A 
l * 1 

. 
i 

I ’ 

ie 
l C I  

.  
:ru 

, 
I i, ! i ,; : I ‘,j; I 





: 2 . : 

* .  
A  

A  

I 

I 1 i ! 
! : 
I ’ 

I 

I 
, 
I 

1 
/ 

j 
I 

I 





MEAN TIME BETWEEN FAULTS AND MEAN TIME BETWEEN REPAIRS AT SELECTED TIME POINTS 

-TIME ABSCISSA MTBF MTBR 

1 l oo 
2 .oo 
3.00 
4 .oo 
5.00 
6.00 
7 “00 
8.00 
9.00 

10 .oo 
11.00 
12.00 
13 .oo 
14 .oo 
15.00 
16 .OO 
17.00 
18 .OO 
19.00 
20 .oo 
21 .oo 
22 .oo 
23 .OO 
24 .OO 
25 .OO 
26 .OO 
27 .OO 
28 .OO 
29 .oo 
30 .oo 
31 .oo 
32 .OO 
33 .oo 
34.00 
35.00 
36.00 
37.00 
38.00 
39 .oo 
40.00 

.013 
.013 
.014 
.015 
.016 
.019 
l 021 
.024 
.02B 
.032 
.038 
.044 
.052 
.062 
l 073 
.087 
.103 
.123 
.148 
.178 
.214 
.258 
,312 
l 377 
.458 
.556 
.677 
.826 

1.009 
1.234 
1.512 
1.855 
2.278 
2.803 
3.452 
4.258 
5.258 
6.500 
8.046 
9.971 

.050 
.026 
.020 
.018 
.017 
.017 
.018 
.019 
.020 
.023 
.026 
.029 
.033 
.038 
.044 
.052 
.061 
.071 
.084 
.lOO 
.118 
.141 
.168 
.200 
l 239 
.287 
.344 
l 413 
-496 
.596 
.717 
.864 

1.041 
1.255 
1,514 
1.827 
2.206 
2.663 
3.216 
3.885 

Figure 5 
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val but would have been expected to.increase if testing had continued for 40 
units,. 

The instantaneous MTRF of System 6 over 32 months is shown in Figure 6. 
The test period corresponds to the first 30 units (29.75 time abscissa). The 
MTBF shows a decline as testing began and faults were activated with a stable 
low-point over eight months before growth began. This testing covered the 
initial period of system integration and is, therefore, consistent with 
intuitively expected results as major modules initially interact and interface 
problems are discovered. The MTTR decreased through the stable fault 
activities interval and increased as the fault activation rate decreased. 
This may be interpreted as representing intense debugging effort (long hours, 
more debuggers, high priority when faults were at a high rate) with a re- 
laxation of effort as the situation was placed under control. 

The Mean Time to Next Fault for System A is shown in Figure 7. The is- 
sue of whether or not a next fault will occur is not in question until time 
unit 27 and the mean time to next fault shows a steady growth. The same es- 
tima:ion for System 8 is shown in Figure 8. The same pattern is evident. 

The table of values for estimating the number of faults remaining to be 
discovered is given at Figure 9 for System A and Figure 10 for System B. The 
selected values of N are incrgnented by 5 through the O-25 range. The 
probability that there were no more than 25 faults remaining in the software 
of System A at the end of testing was only .104; for System B it is 1.00. 
These results appear plausible for System A, but highly implausible for System 
B unless the System B results are an indication that the testing conditions of 
integration testing were nearing the end of their effectiveness and would 
invoice few remaining faults. As System B testing continues under more strenu- 
ous conditions, the author expects new fault types to be displayed with a 
probable new fault mean function for the next test phase. 

The expected length of a successful mission was analyzed for both Sys- 
tem A and B where the mission is assumed to be using the system under the 
input conditions of the test period. Figure 11 presents the results for Sys- 
tem A for missions with respect to length L, where Lz.143 of the time unit. 
At the end of 40 time units of testing, the probability of executing (or tes- 
ting) for L time with no new faults is .986. Figure 12 presents the results 
for System B in terms of L, where L is approximately one day. At the end of 
testing (29.75 time abscissa) the probability of executing for one day with no 
new faults is ,955. 

The Time to Last Fault Oistribution for System A, presented at Figure 13 
for times from 40 to 60, has a mean of 38.75 time units and a standard de- 
viation of 5.082. Although the testing was stopped at time abscissa 18, the 
distribution suggests that a test period to 44 time units had an 82.8 percent 
problability of disclosing all faults and testing to 46.8 would have had 90.5 
percent probability of disclosing all of the faults. This information would 
have been useful to take into consideration with the cost of testing and 
intended use of the system. For System B, Figure 14, the mean was 31.284 
months and the standard deviation was 1.425. The test period (29.75) had an 
estimated 18 percent probability of disclosing all faults; a test period of 34 
months would have had a 94 percent probability of disclosing all faults. 

49 



MEAN TIME BETWEEN FAULTS AND MEAN TIME BETWEEN REPAIRS AT SELECTED TIME POINTS 

TIME ABSCISSA MTBF MTBR 

7.25 .043 l 049 
8.25 ,033 .038 
9.75 .024 .028 

10.75 .021 .024 
11.25 .019 ,022 
12.00 ,018 -020 
13.00 ,016 l 019 
13.50 .016 .018 
14.25 .015 .018 
15.00 .015 .017 
15.25 .015 .017 
16 .OO ,015 .017 
17.25 .016 .018 
18.50 .018 ,019 
19.25 .019 .021 
19.50 .020 .021 
20.25 .023 .023 
21.25 .027 .027 
24.50 .067 .049 
29.75 .775 .169 
29.95 .875 .177 
30.15 .990 .186 
30 l 35 1.123 .195 
30.55 1.276 .205 
30.75 1.454 ,215 
30.95 1.660 .225 
31.15 1.899 .236 
31.35 2.178 .247 
31.55 2.503 ,259 
31.75 2.884 .271 
31.95 3.330 -284 
32.15 3.855 .297 

Figure 6 
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POINT TIME ABSCISSA 

1 
2 
3 
4 
5 
6 
7 

9” 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2232 
24 
25 

f; 
28 
29 

z 

3332 

3”: 
36 
37 

zi 
40 

1 .oo 1 .ooo l 013 l 013 
2 -00 1 .ooo .013 .013 
3 .oo 1 .ooo .014 .014 
4 .oo 1 .ooo .015 l 015 
5.00 1 l ooo .016 .016 
6 .oo 1 .ooo .019 .019 
7 l oo 1 .ooo .021 .021 
8.00 1 .ooo .024 .024 
9 .oo 1 .ooo .028 .028 

10 .oo 1 .ooo .033 .033 
11 .oo 1 .ooo .038 .038 
12.00 1 .ooo .045 .045 
13 .oo 1 .ooo .053 .053 
14 .oo 1 .ooo .062 .063 
15.00 1 .ooo l 074 .075 
16 .OO 1 .ooo .088 .089 
17.00 1 .ooo .105 .107 
18 .OO 1 .ooo .126 .129 
19.00 1 .ooo .152 .157 
20 l oo 1.000 .184 .191 
21 .oo 1 .ooo .223 .234 
22 -00 1 .ooo .272 .288 
23 .OO 1 .ooo .333 .359 
24 .OO 1 .ooo .410 .454 
25 .OO 1 .ooo -509 .586 
26 .OO 1 .ooo .638 .774 
27 .OO .999 .807 1.036 
28 .OO .997 1.025 1.372 
29 .oo .992 1.294 1.763 
30 .oo .980 1.608 2.172 
31 .oo ,957 1 l 947 2.565 
32 .OO .923 2.292 2.917 
33 .oo .874 2.621 3.216 
34 .oo .812 2.921 3.461 
35 .oo .741 3.185 3.657 
36 .OO .664 3 l 410 3.810 
37 ,oo .585 3.598 3.928 
38 .OO .507 3.753 4.018 
39 .oo .434 3.878 4.086 
40 .oo .367 3.977 4.137 

PROBABILITY OF A NEXT FAULT AND CONDITIONAL MEAN 
AND STANDARD DEVIATION OF TIME TO NEXT FAULT 

PROBABILITY CONDITIONAL 
OF A MEAN TIME TO STANDARD 

NEXT FAULT NEXT FAULT DEVIATION 

Figure 7 
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PROBABILITY OF A NEXT FAULT AND CONDITIONAL MEAN 
AND STANDARD DEVIATION OF TIME TO NEXT FAULT 

POINT TIME ABSCISSA 

1 

3’ 
4 
5 
6 
7 
8 

1: 
11 
12 
13 
14 
15 

:; 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

;i 
30 
31 
32 

7.25 1.000 .043 .042 
8.25 1 l ooo .033 .033 
9.75 1 .ooo .024 .024 

10.75 1 .ooo l 021 l 021 
11.25 1.000 .019 .019 
12.00 1 l ooo .018 ,018 
13.00 1.000 ,016 -016 
13.50 1.000 ,016 ,016 
14.25 1 .ooo -015 .015 
15.00 1 l ooo .015 .015 
15.25 1,000 .015 .015 
16 .OO 1 .ooo .015 .015 
17.25 1 .ooo .016 .016 
18.50 1.000 .018 .018 
19.25 1 .ooo .019 .020 
19 l 50 1 .ooo .020 -020 
20.25 1 .ooo .023 .023 
21.25 1 .ooo .027 .028 
24.50 1 .ooo .068 .070 
29.75 .851 .814 “930 
29.95 .810 .859 .960 
30.15 .764 .899 .984 
30.35 .715 .934 1.003 
30.55 ,663 .964 1.018 
30.75 .610 .989 1.029 
30.95 .556 1 l OlO 1.036 
31.15 .504 1.026 1.040 
31.35 .452 1 l 039 1.042 
31 l 55 -403 1.048 1.042 
31.75 .357 1.055 1.040 
31.95 .314 1.058 1.036 
32.15 .275 1.060 1.031 

PROBABILITY CONDITIONAL 
OF A MEAN TIME TO 

NEXT FAULT NEXT FAULT 
STANDARD 
DEVIATION 

Figure 8 
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PROBABILITY THAT AT MOST N FAULTS- ARE ACTIVATED AFTER SELECTED TIME POINTS 

POINT 

: 

i 
5 
6 
7 
8 

1: 
11 
12 

ti 
15 
16 
17 
18 

:‘o 

23 
24 

27 

E9” 
30 
31 
32 
33 
34 
35 

38 
39 
40 

TIME 
ABSCISSA 0 5 

VALUE OF N 
10 15 20 25 

1 .oo 0 .ooo .ooo .ooo .ooo .ooo ,000 
2.00 0 l ooo .ooo .ooo -000 ,000 .ooo 
3.00 0 .ooo ,000 .ooo .ooo .ooo .ooo 
4 .oo 0 l ooo .ooo l ooo .ooo .ooo .ooo 
5.00 0.000 .ooo l ooo .ooo .ooo .ooo 
6 .OO 0.000 .ooo .ooo “000 .ooo .ooo 
7 l oo 0 .ooo l ooo .ooo ,000 .ooo .ooo 
8.00 0 .ooo ,000 .ooo .ooo l ooo .ooo 
9.00 0.000 .ooo .ooo .ooo l ooo .ooo 

10 .oo 0 l ooo .ooo .ooo .ooo .ooo .ooo 
11 .oo 0 .ooo .ooo l ooo .ooo l ooo .ooo 
12.00 0.000 .ooo .ooo .ooo .ooo .ooo 
13 .oo 0.000 .ooo ,000 ,000 .ooo .ooo 
14 .oo 0.000 1000 .ooo .ooo .ooo .ooo 
15.00 0 .ooo .ooo .ooo .ooo .ooo .ooo 
16 .OO .ooo .ooo -000 .ooo .013 .104 
17 .oo .ooo l ooo .ooo .ooo ,013 l 104 
18 .OO .ooo .ooo .ooo .ooo .013 .104 
19 .oo .ooo .ooo .ooo .ooo .013 .104 
20.00 .ooo ,000 l ooo .003 .050 ,259 
21 ,oo .ooo .ooo .OOl .035 .244 .634 
22 .oo .ooo l ooo .013 .172 ,585 .900 
23 .OO .ooo .OOl .072 .450 ,858 .985 
24 .OO .ooo .009 .231 .741 .970 .999 
25 .OO .ooo .041 .479 ,916 .996 1 .ooo 
26 .OO .ooo .125 .723 -981 1 .ooo 1 .ooo 
27 .OO .OOl .273 ‘885 .997 1 l ooo 1 .ooo 
28 .OO .003 .464 -962 1,000 1 .ooo 1 .ooo 
29 l oo .008 .653 .990 1 .ooo 1 .ooo 1 .ooo 
30 .oo .020 .802 .998 1 .ooo 1 l ooo 1 l ooo 
31 .oo .043 .900 1 .ooo 1 .ooo 1 .ooo 1 l ooo 
32 .OO .077 .954 1.000 1 .ooo 1 .ooo 1 .ooo 
33 .oo ,126 .981 1 .ooo 1 l ooo 1 .ooo 1 .ooo 
34.00 .188 .993 1 .ooo 1.000 1 .ooo 1 .ooo 
35 .oo .259 .997 1 .ooo 1 .ooo 1 .ooo 1 l ooo 
36 .OO .336 .999 1 .ooo 1.000 1 .ooo 1 .ooo 
37 .oo .415 1 .ooo 1 .ooo 1 .ooo 1 .ooo 1 .ooo 
38.00 .493 1 .ooo 1 .ooo 1 .ooo 1 .ooo 1 .ooo 
39 .oo .566 1 l ooo 1 .ooo 1 .ooo 1 .ooo 1 l ooo 
40 .oo .633 1 .ooo 1 .ooo 1 l ooo 1 .ooo 1 .ooo 

Figure 9 
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PROBABIL ITY THAT AT MOST N FAULTS.ARE ACTIVATED AFTER SELECTED TIME POINTS 

POINT 

1 

z 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2232 
24 
25 

:7” 
28 
29 

E 
32 

TIME 
ABSCISSA 0 

7.25 0.000 
8.25 0 .ooo 
9.75 0 -000 

10.75 0.000 
11.25 0 l ooo 
12.00 0 .ooo 
13.00 0.000 
13.50 0.000 
14.25 0 .ooo 
15 .oo 0,000 
15.25 0.000 
16 -00 0 “000 
17.25 0 -000 
18.50 0 -000 
19.25 0 .ooo 
19.50 0 -000 
20.25 0 .ooo 
21.25 0 .ooo 
24.50 .ooo 
29.75 .149 
29.95 .190 
30.15 .236 
30.35 .285 
30 l 55 .337 
30.75 .390 
30.95 .444 
31.15 ,496 
31.35 .548 
31.55 .597 
31.75 .643 
31.95 “686 
32.15 .725 

5 -- 

-000 
.ooo 
l ooo 
l ooo 
,000 
l ooo 
,000 
l ooo 
.ooo 
.ooo 
.ooo 
.ooo 
-000 
.ooo 
.ooo 
.ooo 
.ooo 
l ooo 
l ooo 
.987 
.993 
.996 
.998 
.999 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 l ooo 

VALUE OF N 
10 

.ooo 
-000 
.ooo 
,000 
.ooo 
l ooo 
,000 
l ooo 
.ooo 
,000 
.ooo 
.ooo 
.ooo 
.ooo 
.ooo 
,000 
.ooo 
.ooo 
l ooo 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 l ooo 
1 .ooo 
1.000 
1 .ooo 

15 

.ooo 
l ooo 
-000 
.ooo 
.ooo 
.ooo 
.ooo 
.ooo 
.ooo 
.ooo 
l ooo 
-000 
l ooo 
l ooo 
,000 
l ooo 
.ooo 
.ooo 
.ooo 

1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .a00 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 

20 

.ooo 
l ooo 
.ooo 
.ooo 
.ooo 
.ooo 
l ooo 
l ooo 
,000 
.ooo 
,000 
.ooo 
.ooo 
-000 
l ooo 
.ooo 
.ooo 
.ooo 
.013 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 l ooo 
1 .ooo 
1 l ooo 
1,000 
1 .ooo 
1 .ooo 
1 l ooo 
1.000 
1 .ooo 

25 

.ooo 
.ooo 
.ooo 
.ooo 
l ooo 
.ooo 
.ooo 
,000 
.ooo 
l ooo 
,000 
.ooo 
.ooo 
.ooo 
l ooo 
.ooo 
.ooo 
.ooo 
.104 

1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 l ooo 
1 .ooo 

Figure 10 
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VALUES OF THE TIME-TO-LAST-FAULT DISTRIBUTION 
WITH MEAN 38.750 AND STANDARD DEVIATION 5.082 

POINT TIME ABSCISSA DISTRIBUTION VALUE 

102 40.80 .682 
103 41.20 .704 
104 41.60 .726 

.. 105 42 .OO .746 
106 42.40 .764 
107 42.80 .782 
108 43 -20 .799 
109 43.60 .814 
110 44 l oo .828 
111 44.40 .842 
112 44.80 .854 
113 45.20 .866 
114 45.60 ,877 
115 46 .OO .887 
116 46.40 .896 
117 46.80 .905 
118 47 -20 .912 
119 47.60 l 920 
120 48 .OO .926 
121 48.40 .933 
122 48.80 .938 
123 49 l 20 .944 
124 49.60 .948 
125 50 ,oo .953 
126 50.40 .957 
127 50.80 .960 
128 51.20 .964 
129 51.60 .967 
130 52 .oo l 970 
131 52.40 .972 
132 52.80 .975 
133 53.20 .977 
134 53.60 .979 
135 54 .oo ,981 
136 54.40 .983 
137 54.80 .984 
138 55.20 .986 
139 55.60 .987 
140 56 .OO .988 
141 56.40 .989 
142 56.80 .990 
143 57.20 .991 
144 57.60 .992 
145 58.00 .992 
146 58.40 .993 
147 58.80 .994 
148 59.20 ,994 
149 59.60 .994 
150 60 .OO .995 
151 60.40 .996 

Figure 13 
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VAL IIE 5 Or ltil 1 IN -1()-L/*,$1 -FAULT DISIRI \:\I1 I ON 
\!llH NAti 31.2t:4 AtJl) SlAtJI,ARD DtVlAllOt; I .425 

1’0 I NT ..--- 

ID2 
103 
104 
105 
IOG 
107 
108 
309 
330 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
340 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 

32.79 
33.11 
33.43 
33.75 
34.07 
34.39 
34.71 
35.03 
35.36 
35.68 
3G.00 
36.32 
36.64 
36 -96 
37.28 
37.61 
37.93 
38.25 
38.57 
38.89 
39.21 
39 l 53 
39.96 
40.18 
40.50 
40.82 
41.14 
41.46 
41.78 
42.11 
42.43 
42.75 
43.07 
43.39 
43.71 
44.03 
44.36 
44.68 
45.00 
45.32 
45.64 
45.96 
46.28 
46.61 
46.93 
47.25 
47.57 
47.89 
48.21 
48.53 

DISTRIRUTION VALUE 

.827 
.866 
.a97 
.921 
l 941 
.956 
.967 
.976 
.982 
.987 
-991 
.993 
.995 
-997 
.998 
-998 
.999 
.999 

1 l ooo 
1.000 
1.000 
1.000 
1.000 
1.000 
1 .ooo 
1,000 
1.000 
1.000 
1.000 
1 l ooo 
1 .ooo 
1.000 
1 .ooo 
1.000 
1.000 
1 .ooo 
1 .ooo 
1 l ooo 
1 l ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 l ooo 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 l ooo 
1 .ooo 

Figure 14 
3. Summary. These initial applications of the model demonstrate the useful- 
ness of the estimation method and the consistency and plausibility of the es- 
titxtiort. 
tinued 

Ttle accuracy of the estimation will be further verified by con- 
zinalysis through the additional testing of systen B and by ap- 

plication of the model to additional systems under test. 58 



PROBABILISTIC PROGRAM ESTIMATES - COMPARISON OF SIMULATED RESULTS 
USING BETA VIS-A-VIS TRIANGULAR ACTIVITY DISTRIBUTIONS 

Conrad W. Faber 
U.S, Army Aviation Research and Development Command 

St, Louis, Missouri 63120 

ABSTRACT. When developing probabilistic program estimates for systems in 
the R&D stage from three point estimates of component parts, the triangular 
distribution is often assumed for the parts. 

The model/method proposed assumes the component distributions are described 
by beta probability densities and compares the results vis-a-vis assuming 
triangular distributions. 

The model assumes: 

a. Germane historical statistical data is not available nor is 
engineering estimate appropriate. 

b. Enough knowledge is available to estimate the general shape 
distributions. 

C. The user has access to computer facilities. 

i INTRODUCTION. 1 To adequately evaluate the risk (time and/or cost) of a 

a bottoms up 

of the beta 

new Army program, the decision-maker needs more than a point estimate, i.e., 
some measure of how much the estimate could be in error. Although methodology 
and models exist for developing risk profiles based upon historical data, 
frequently a data base 1s not available or is not sufficiently analogous or the 
physical/performance characteristics of the new system are beyond the reliable 
range of the data base. Consequently, estimates for the new system frequently 
depend upon expert opinion of a very few knowledgeable persons. 

Often the "expert" is asked to provide the range and most likely (modal) 
estimates of several activities, e.g., costs to fabricate subsystems, integration 
and test costs, etc. A common method of combining these activl.ty three point 
estimates is to assume a triangular distribution for each activity and determine 
a total system cost by Monte Carlo simulation, 

The triangular distribution is completely described by the mode and range. 
The beta distribution includes one additional shape parameter which offers much 
greater flexibility. Because of its rigidity, the triangular distribution can 
easily misrepresent the probabilities within the range as shown by an example in 
Appendix A. 

The proposed method described in this paper suggests the expert select one 
of nine beta distributions which best describes the general shape of the probability 
distribution for each activity. Appendix B compares these nine distributions 
vis-a-vis triangular distributions with the same range and modes. The proposed 
method also includes a simplistic system estimate and compares the results obtained 
by using both the beta and triangular distributions. 
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PROPOSED METHOD 

GENERAL: 
a* Uncertainty (risk) of an activity* can be described by a 

probability distribution. This uncertainty relates to potential 
technical risks and economic factors. Another major source of 
uncertainty, not covered in this paper, is requirements uncertainty, 
egg-, changes in performance requirements and quantity procured. 
For a given risk assessment, requirements are assumed to be fixed. 
Program uncertafnty is a convolution of the activities risks. 

b. To determine program uncertainty, a PERT type network must 
be developed displaying the activities and events and their major 
interdependencies. This network should he correlated to the elements 
of the program work breakdown structure. For each actlvfty, a distri- 
bution describes the uncertainty involved in that actfvity. When 
applicable historical data is available or factors assumed, appropriate 
distributions should be used. This paper describes a method of 
estimating activity distributions when the above is not available. 

c. Once the activity distributions and parameters are specified, 
a total program (or intermediate milestone) probability distribution 
can be derived by Monte Carlo simulation. Three models (RISCA, 
SOLVNET and VERT) are described in DARCDM Handbook 11-1.1-79, Army 
Programs: Decision Risk Analysis Handbook. Of the models known by the 
author, VERT (Venture Evaluation and Review Technique) is the most 
versatile and is used in the sample case in a subsequent section. 

d. A major shortcoming of most risk models is the limited number 
of distributions built into the basic program and/or the amount of sub- 
jectlve probabilistic data to be requested from the "expert." Since 
many activity distributions are skewed to the right, i.e., the possible 
range of an overrun exceeds that of an underrun, the standard normal 
distribution is not appropriate. Also, the frequently used triangular 
distribution can easily misrepresent the probability densities as 
shown by an example in Appendixes A and T3. The VERT program allows the 
analyst a choice of over a dozen densfty functions. These can be 
used to describe activities in terms of time and/or cost. 

e. For a program with many activities, the Central .Limit Theorem 
(CLT) provides an unbiased estimate of the expected mean and variance 
of the total program cost** by simply a dding the expected values 
of the activity means and variances since the limiting distribution 
of additive variables (even from skewed distributions) is normal. 
However, for a few skewed activities, or domination by a few skewed 
activities, or intermediate milestone distributions based upon a small 
number of skewed activities, application of the CLT can give misleading 
results regarding variance and skewness. 

* Activity is defined as the time or cost to complete a task whereas 
an event is a point in time, e.g., start of flight testing. 
** Estimates of program time or cost as a function of time generally 
cannot use the CLT. While the expected mean for time can be computed 
along the critical path, the distribution for time or cost for 
several activities requires more sophisticated technfques, e.g., 
simulation. 
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SELECTION OF DISTRIBUTION(S): 
a.When the analyst must determine the activity distributions 

from subjective inputs, the analyst usually can only zero in on the 
general shape of the distribution and its associated parameters. 
Consequently the following criteria was used to select a dietribu- 
tion or distributions: 

1. Simplicity 
2. Could be symmetric, skewed left, or skewed right 
3. Could have varying degrees of kurtosia, i.e., concentration 

around mean or mode 
4. Could be normalized for computer simulation 
b. During the 1960's, several theoretical papers (See References 

3 thru 8) where written regarding cost uncertainty. All of the 
authors of these papers chose the beta probability function to 
describe activities because of its versatility and simplicity. 
Because of the large amount of computer core and central processing 
unit (CPU) time required to run a Monte Carlo simulation, most of 
these earlier authors advocated the convolution of beta distributions 
by the method of moments. This method provides a total program cost 
distribution profile but suffers from the same shortcomings a8 using 
the Central Limit Theorem discussed earlier. During the decade of 
the :L97O's, little use has been made of this research. However, with 
todays high *speed computers, a complex network can be simulated via 
Monte Carlo techniques much more efficiently. (Using the VERT program, 
a complex network can be simulated 1000 times with under 240K core and 
under 2 minutes CPU time.) 

c. This author evaluated several distributions (triangular, 
gamma, weibull, beta, et al.) and reached the same conclusion 
that the beta function could adequately describe most activity dis- 
tributions and was generally superior to other probability functions 
vis-a-vis the criteria listed above. The preceeding statement is 
not meant to suggest the exclusive use of the beta distribution when 
acquiring subjective inputs. There are situations where other distri- 
butiona maybe more appropriate, e.g., the Poisson distribution for the 
expected life of a component or the binomial distribution for either/or 
situations. 

d. The heta Probability density function (pdf) is: 

r(a f b) (a - 1) (b - 1) 
f(x) = 

r(a)rCb) x 
(1 - xl , where 0 < x C 1 

The parameters "a" and "b" determine the degree of skewness and kurtosis. 
The following transformation of actual high (H) and low (L) points of 
the range conform to the beta pdf range of 0 thru 1. 

x = (X-L)/(H-L) , where X is the actual data value. 

The computer program, given the beta pdf parameters, randomly selects 
x and then transforms it to X for each iteration through the network. 
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e. When obtaining subjective probabilistic information, the author 
has experienced the best results when the choices available to the 
experts have the following characteristics: 

1. Finite end points which exclude extremely unlikely probabilities 
2. Unimodal 
3. Continuous rather than discrete 
4. Few input parameters required 
5. A finite set, with visual illustrations, from which to choose 

The beta distribution also met the first four elements of this criteria. 
To meet criteria five, nine representative beta distributions were sel- 
ected. The first four are skewed to the right with modes 25% and 40% 
of the way through the range* Distributions five through seven are 
symmetric and distributions eight and nine slightly skewed to the left 
with the modes 60% of the way through the range. These nine distribu- 
tions are displayed in Appendix C. 

INPUT REQUIRED: 
a. To determine program or subprogram uncertainties, the activities 

and events must be defined and their interrelationships established. 
This is best depicted in a PERT type network. Although it is not the 
purpose of this paper to describe how to construct this network, the 
following general comments indicate the flexibility available. 

1. Branching probability paths can be constructed, e.g., probabil- 
ities of failure causing program stop, sufficient problems to cause major 
redesign, or adequate success to continue work as originally planned. 
This branching may be activated by cost and/or time constraints, 

2. Activities can be described in terms of time or cost risk. Care 
should be taken to include the interdependancies of events. Activities 
may have to be subdivided for this purpose, e*g., design of item A into 
preliminary design and final design of A because the prelimary design 
of A is required before item B can be designed. 

3. Time uncertainty usually assumes a normal work pace (e.g., a 40 
hour work week). Analysis can then determine critical activities which 
allows management the option of selected overtime or reallocation of 
resources and awareness of which activities/events to monitor closely. 

4. Cost is frequently determined as a linear function of time, 
i.e., cost = a + bx, where a is a base constant and b is a cost per 
unit of time. This is based on the close relationship between cost 
and time where time is a function of technical uncertainty. 

5. Activities/events become more specific ae a program is defined 
in more detail. E.g., to monitor the risk in an ongoing program, the 
activities/events for the next 6 months are in more detail than those 
farther in the future whereas past activities are now given a fixed 
number. 

6. A well constructed program network may combine elements of all 
the above. 
The inputs required for risk analysis can be readily seen from the 
developed network. The suggested procedure which follows assumes act- 
ivity estimates cannot be obtaIned by traditional parametric 
statistical relationships. 
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b. Parameters required to describe an activity's uncertainty, using 
the beta distribution, are: the lower and upper bounds, the most likely 
value, and a choice of one of the nine beta distributions shown in 
Appendix C. Note that there is a redundancy between the most likely 
value and the beta distribution selected. This redundancy provides a 
check on the consistency of the information provided. 

I. The high (H) or pessimistic bound assumes significant aspects 
of the activity develop problems but excludes extremely unlikely or 
catastrophic occurrences such as a tornado destroying a prototype or 
a nattonal transportation strike. There should be little chance of 
exceeding this bound - a workable guideline is no more than one chance 
in a hundred. 

2. The low (L) or optimistic bound is defined similarly to the 
high estimate, except the most favorable conditEons exist. 

3. The most likely value or mode (M) ie that estFmate which has 
the greatest possibility of occurring. 

4. Unless the distribution is symmetric around the mean, the mode 
is different from the mean. The above terms are illustrated by a 
hypothetical example in Appendix D. 

DATA COLLECTION: 
a. Unless the person providing the information has experience 

in this method of estimating, the personal Interview method is pre- 
ferred. Although it may require more time and money, the analyst 
has more confidence in the reliability of the inputs. When two or 
more estimators are available, the Delphi technique may be used. 
Other data collection techniques are discussed -tn DARCOM Handbook 
11-1.1-79, Reference 2. 

b. Some general points the interviewer should consider are: 
1. He(s) must understand and be able to describe the program, 

scope of work, and the network in adequate detail to answer questions 
by the estimator and to ask the right questions. 

2. Allow sufficient time for the interview. Try to pick a 
setting which minimizes interruptions. 

3. The mode is the point most likely, i.e., the point with the 
most chance of being correct. It may not be the mean or expected 
value. To assist the interviewer, the modes and means are given 
in Aplpendix C with the nine beta distributions. Also given are 
the greas under the decile and quartfle tails of the distributions. 

4. The low and high points of the range should be reasonable. 
This includes the possibility that many events could be favorable 
or unfavorable but nothing catastrophic would happen. 

5. Because of the redundancy in input, the interviewer can 
quickly check for consistency. However, an atmosphere of coopera- 
tion should be promoted to minimize defensive reactions. Also, 
the interviewer should be careful to not introduce bias into the 
the estimates received. 

6. The interviewer should remain alert to the estimator's 
understanding of the process and his knowledge oE what is being 
estimated. 

7. As a result of additional data acquired, the program network 
may need to be revised. 
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SAMPLE CASE: 

a. Situation: A missile system is to be developed using an 
existing proven system as the base. The only major change will be 
in the guidance subsystem. The system is composed of five subsystems: 
airframe (A), propulsi.on (P), guidance (G), peculiar ground support 
equipment (PG) and common ground support equfpment (CG). No major 
problems in subsystem interfaces is expected. The first four sub- 
systems will be designed, fabricated or modified (DFM). These four 
subsystems will then each be component tested and fixed (CTF) as 
necessary- Meanwhile CG will be acquired (ACG). Next all subsystems 
will be integrated and fixed (IF) as necessary, followed with a 
complete system test (ST). 

b. The above relationships are shown in Exhibit 1. Event names 
follow the abbreviations above. Figures below each line indicate the 
beta type distribution plus the low, mode and high cost estimates. 
E.g.3 for the activity CTFG 

!--I CTFG 
G -...-..-- --+..-.." -..- +. 
- B2: 100, 125, 200 

the guidance subsystem is component tested and fixed as necessary* 
The cost uncertainty is described by the beta type 2 distribution 
with a range from 100 to 200 and a mode of 125. Exhibit 2 portrays 
the same data in tabular form. 

c. Analysis: 
1. Although the mode is that value which occures most often, it 

is not the expected value for an activity. (Reference example in 
Appendix D.) In the Sample Case, the point estimate for the total 
program, determined by adding the modes, is 1695 whereas the sum of 
the activity expected values is 1775. The mode method underestimates 
the costs by 80 units or 5 percent. The mode method typically under- 
estimates a program's cost or time when the program component 
activities are skewed to the right, i.e., the range of an overrun 
exceeds that of an underrun. The program total mean value, as deter- 
mined by simulation, will normally not equal the expected mean value 
because of the random selection of activity values during simulation; 
however, the two methods should have totals within 4 1 percent. 
Although the point estimate as determined by the expected value or by 
simulation is superior to the mode method, the decision maker still 
has no quantification of the uncertainties about the point estimate, 
i.e., some measure of how much the estimate could be in error. 

2. Simulating the Sample Case network by Monte Carlo techniques 
provides a convolution of the activity probability distrfbutions and 
provides a measure of the uncertainty around the point estimate. 
Exhibit 3 dLsplays probabilities and costs for selected events. 
E-g-9 using the beta distribution, there is a 75 percent chance that 
the cost of the program will equal or be less than 1831 units or a 
25 percent chance that the cost will exceed 1831 units. Exhibits 4.1 
thru 4.3 display the VERT output for the Sample Case for the same 
events summarized on Exhibit 3. Using the VERT model, output can be 
generated at any event. 
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Activity 
-- 

DFMA 

DFMP 

DFMG 

DFMPG 

ACG 

CTFA 

CTFP 

CTFG 

CTFPG 

Subtotal 

IF 

ST 

SAMPLE CASE DATA 

--------- Beta Parameters ------11 
a b 

-- 

3. 4. 

L M 

2. 2.5 

2. 4. 

2. 4. 

3. 3. 

3. 4. 

3. 4. 

2. 4. 

2. 2.5 

at event uJ" 

2. 4. 

2. 2.5 

160. 

220. 

400. 

40. 

40. 

16. 

60. 

100. 

16. 
-- 

1052. 

150. 

100. 

TOTAL PROGRAM 1302. 

200. 

300. 

500. 

SO. 

50. 

20. 

80. 

125. 

20. 
-- 

1345. 

200. 

150. 
---- 

1695. 

H 
-- 

260. 

420. 

800. 

80. 

60. 

26. 

110. 

200. 

26. 
-- 

1982. 

350. 

225. 
,- 

2557. 

E[Xf 
-- 

203. 

309. 

533. 

53. 

50. 

20. 

81. 

133. 

20. 
-- 
1402. 

217. 

156. 

1775. 

s i m *::- 

203. 

301. 

536. 

53. 

50. 

20. 

82. 

132. 

20. 

1397. 

215. 

150. 
-- 

1762. 

* Expected value for the normalized beta distribution is a/(a+b), 
which 1s converted by multiplying by the range and adding the lower 
limit. 

** Activity mean values resulting from stmulating the activities by 
1000 iterations through the network using the VERT model. 

EXHIBIT 2 
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SAMPLE CASE 

Probability Points for Convoluted Distributions 

Event* Probability Beta Dist. Triangular Dist.** 
__I, - - - . . - -  _ I - - -  - - - -  

XC .10 576 598 
.25 610 638 

mean 668 705 
.75 719 763 
l 90 778 837 

.lO 1285 1331 

.25 1330 1385 
mean 1397 1457 

. 75 1459 1525 

.90 1524 1595 

FINISH .lO 1632 1712 
.25 1689 1764 

mean 1762 1848 
.75 1831 1927 
990 1899 1994 

---------a-- - - - - -  P I -  

* Costs are for all activities leading to the event. 

XG: Comp,letlon of guidance subsystem prior to integration 
with other subsystems. 

J: Cost of all subsystems before system integration. 

FINISH: COSt of total. program. 

** The triangular distribution results assumed the same range and mode for 
each activity as that used for the beta. 

EXHIBIT 3 
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CONCLUDING REMARKS: 

The desirability and even the necessity for quantifying the uncer- 
tainty around the point estimates (time or cost) for new or ongoing 
programs is becoming a standard procedure within the Department of Army. 
The professionalism of analysts dictate that they maintain awareness of 
new and revised techniques. With the increasing availability of efflci- 
ent aud fast computer equipment, former analytical methods can now be 
performed economically. Although the method proposed in this paper is 
not new, its use has been limited by unawareness, availability of 
computer models with random number generators for many probability 
distributions, and limited computer capability. The later reasona 
are no longer true and a major purpose of this paper is to promote 
more widespread awareness of the capabilities available to analysts 
and decision makers. 

Although this method does not reduce the amount of uncertainty 
in a program, it does attempt to quantify them in a more precise manner. 
Provided with this additional knowledge, the decision maker should be 
able to make better decisions and allocations of our available resources. 
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BETA VIS-A-VTS TRIAYG'JLAR DISTRIRUT10NS 

SPECIFIC EX.-\MFLE: CoIllpared are the beta type 2 Jistribtltioa and a 

triangular d lstributi$>n, both with the same range and mode. For this 

Case, as shown on the graph and chart below, the triangular distribu- 

tion has significantly lees area in the low t.~ng? and more in the 

high range. Also, tht? expected value or mean sf the beta and triangu- 

lar distributions shown are 0.333 and 0.417 r+spectively. 

X 

.oo I 000 

l lO . 081 .040 

. 25 

.30 

. 263 .160 

. 367 . 2 50 

.472 .347 

.4Q . 663 .520 

l 50 .a13 .6bf 

. 60 .913 l 787 

.70 . 969 ,880 
l 75 . 984 .917 
. 80 .!I93 .947 

l 90 

1 l 00 

.999 .987 

1.000 1.000 

. . - 

,. 
__ -- --._. -.. t __-.* 

-- --L.--.-.- -!-.- -.-A- --- 

.-- -.__. -- --;.--, - - .--- ----.---- _--_- -- . - 

0 .I .z -3 

GENERAL: The differences described above are for a specific case and 

will change with different shaped beta dietrihutiona. Whereas both 

distributions include the parametera of range and mode, the beta 

parameters include a shape parameter which allows greater discretion 

in describing the uncertainty in an activity. However, under certain 

conditions, the triangular distribution maybe ae accurate aa experi- 

ence will justify. 
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HYPOTHETICAL EXAMPLE 

Mocte sis-n-vi6 Hean 

PRORLEM: How much should you pay the neighbor boy for mowing your yard? 

SITUATION: The price is normally a fixed price arrangement. You 

consider $2. an hour a fair price and most of the time it takes 2 

hours to do the job. Many times there is little rain and the 

resulting shorter grass can be mowed more quickly. However, if 

there is some wind, small branches fall on the lawn and the boy 

must pick them up before he mows. Occasionly. the wind blows down 

many branches. Extremely rare occurances are ignored, e.g., extended 

draught or a tornado. You estimate the job will take from 1.5 to 

3.5 hours with the most likely time of 2.0 hours and a distribution 

shaped like that shown below. 

CONCLUSION: Since the distribution is a beta distribution with a/b 

parameters of 214, the average expected time is 2.17 hours or $4.34 

at $2. per hour. 

ti1.t : 1.5 .! * 0 1,17 3.5 

AP1’E:;I~Lx I) 84 



ON THE DISTRIBUTION OF A LINEAR COMBINATION 
OF MULTINOMIAL VARIABLES 

John C. Conlon 
U S Army Materiel Systems Analysis Activity 

Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. A user-provided subjective comparison of the quality of a 
service or product as furnished by two different agents is generally done by 
having a sample of users rate one or other of the agents as better. If the 
same users are not exposed to the service provided by both agents, a differ- 
ent technique of evaluating the agents is required, In this paper, a technique 
of having some users rate one agent and different users rate the other on a 
scale of 0 to K is proposed. A test of hypothesis is given, the distribution 
of the test statistic is obtained by simulation. The program is listed and 
some sample output is included. 

1. INTRODUCTION. In this report we describe a technique for evaluating 
a sub.jective rating of a product or service. A typical situation might be 
when two performing agents are manufacturing a product or providing a service. 
Each agent is being rated subjectively as to the quality of the product or 
service. We develop a parameter useful in comparing the two agents and a 
statistic for testing the difference. The statistic is asymptotically normal, 
but we needed to determine its distribution for small sample sizes. We 
accomplished this using a Monte Carlo simulation, 

In Section 2 we describe the problem with the inherent difficulties in 
solving it analytically. We then detail how we simulate the distribution of 
the test statistic. In Section 3 we document the functions of the program and 
its subroutines. In the Appendix, we give a listing of the program, input 
requirements, and sample output. We also include a graph of the distribution 
showing how it approaches normality as sample sizes are increased. 

2. DESCRIPTION OF THE PROBLEM AND THE SIMULATION. Whenever a subjective 
ratinlg of the quality of some product/service is performed it usually assumes 
the following form. Subjects are requested to rate on a scale from zero to 
"k" the quality of the product or service. The number "k" can be any integer 
larger than zero with the relationship that the larger the value of k, the 
finer is the delineation desired. When a number, say n, of subjects rate the 
product/service, then the numbers of observations in each of the k + 1 catego- 
ries represent a sample from a (k + 1) - dimensional multinomial distribution. 

The situation often arises when two performing agents are providing the 
product/service and the analyst desires to determine which one is performing 
better. In some cases it may be impossible to have a subject choose which 
he thinks to be the better of the two after having tested each one, This may 
occur when the performing agents are providing the product/service at two 
different times and the same subjects are not available. In this case it 
seems reasonable to have n subjects rate performing agent A and m other 
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subjects rate performing agent B. This provides the analyst with independent 
samples of size n and m from two multinomial distributions. We may then 
test for the equivalence of two multinomial distributions. There are some 
well established procedures for accomplishing this. For our situation this 
may not be entirely appropriate, since to test the equivalence of two multi- 
nomial distributions is actually to test the equivalence of the probabilities 
of being in each category for the two distributions. As an alternative to the 

classical approach, consider the parameter, 1 a p., where p 
j:o j J 

j is the probability 

of an observation being in the jth category and a. is a weighting factor 
J 

proportional to the desirability of being in category j. We require for conven- 
ience that a0 be zero and that all weights be integer values. A reasonable 

test to determine the better of the two performing agents is to test the 

hypothesis, ji,aj(pj-pj, = 0. 

The statistic chosen for testing the above hypothesis is f a (MN--NM ), 
j=d d J j 

where Nj and Mj are the number of responses in the jth category, respectively, 

for each distribution. This statistic was chosen since it always yields an 
integer value. We denote this statistic Q and study the distribution of Q. 
The probability that Q does not exceed x, FQ(x), is 

cc N 

>( 

M 

k 
"0' "1' "', nk mosml' -.., mk 

wx {m,n: a - - jLo j(Mnj-Nmj) = Ul 

While this is an exact expression for the distribution function F 
k Q' 

it is of 

little value in constructing a test of the null hypothesis, 1 a.(p.-p?) = 0. 
j=o J J 3 

Even when the null hypothesis is true, it is impossible to compute percentage 
points, the reason being that for any set of parameters, po, p,, . . . . pk, there 

are an uncountable number of values for p;, p;, - . . , pc such that F a.(p.-pjr) = 0. 
j=o J J 3 

Since the random vectors N and M are asymptotically multivariate normal, the 
statistic Q is also asymptotically normal. When the null hypothesis is true, the 
mean of Q is zero and the variance of Q is 
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In order to construct an approximate test of the hypothesis, j&j(Pj-Pj) = 0. 

using the normal distribution we must use the estimates N 
j 

/N and M /M for p 
1 j 

and pJ, respectively, j = 0, 1, . . . . k. Since this is an asymptotic result, 

a large sample size is required (N, M 2 25 is-reconsnended). 

The problem remains as to how to handle the small sample situation. We 
decided to simulate the distribution of Q for small sample sizes. The simu- 
lation involves the following steps (which are explained in more detail later): 

a Randomly generate a set of parameters p0, pl, . . . . pk. 

a Deterministically construct sets of parameters p;. p;, ..-, pi such 
k 

that in each instance 1 a.(p.-p?) = 0, or any real number. 
j=oJ J J 

I) For each set of parameters, one hundred random samples of size N(M) 
are drawn from the associated multinomial distribution. 

a The value of the statistic Q is computed and recorded. 

Each of the four steps above is repeated one thousand times with the result 

that approximately 100,000(2k-1 -1) values of Q are used in the tabulation of 
the distribution of Q. Let us examine now in detail the steps enumerated above. 

The parameters po, p,, . . . , pk are generated according to the density 

f(Pl'P2' . . ..p.)" k!I(h:o< t pjzl)i with p0 = 1 - This distribution 
-j=1 

was chosen as being uniform on the hyperplane defined by 15: 0 z 't xq4. To 
i=l - 

generate the values for po, p,, . . ..pk. we use the following procedure. The 

marginal density of pk is given by 

f(x) = k(l-x)k-l, 

so that the cumulative distribution function for pk is given by 

F(x) = l-(l-x)k. 

The conditional cumulative distribution of pi given pl,p2, '"'pi-1 is 

k-i 

IThe fml:tion I(A) is the characteristic function on the set A. 



To generate pi after having generated p,,p2, . . ..pi-. we generate an observation 

from the uniform distribution on the interval (0, 1). Let us denote this 
observation u. The value for pi is then 

l/k-i 
('-pi-p*- .*. -pi-l )(l-('-') )- 

After the values for p,, p2, .,. 
k k 

pk have been generated, we set pO to the 

quantity l-iblpi, SO that ic.opi = 1. 
= 

After a set of values for p0, p,, . . . , pk has been generated, the next 
k 

step is to construct values for p*o, p;, . . ..pi such that 1 
i=O 

ai(pi-pf) = 0, or 

any real number. We chose to select the pt's deterministically rather than by 

a random selection process. Our thought was to select sets of values for the 
pt's which represent a wide range of possibilities. To this end we chose to 

select one set for each of the following situations: one non-zero p;, two 

non-zero pp's, etc. For the case involving two or more non-zero pi's we 

set the constraint that aipr = a p* for each i,j such that pi'pj are non-zero. 
3 J 

This is an artificial constraint chosen solely for ease of programming. All 
possible combinations of each number of non-zero values are attempted although 
some combinations could result in the sum of the ~7's greater than one. When 

this occurs, the values are discarded and the next set of p:'s is constructed. 

After a single set of values for po, p,, . . ..pk and pc, pi, , *., pi have 

been established, we then select one hundred samples each of size N and M, 
respectively, from each multinomial distribution. For each pair of samples 
the statistic Q is computed and recorded. The results are tabulated and dis- 
played as a discrete distribution function in 140 steps. The length of the 
steps is a function of the weights and the sample sizes. 

3. DESCRIPTION OF THE PROGRAM. The main program receives the input 
requirements, directs the development of the pi's and the p:'s, and prepares 

the results for writing on a permanent file and the output file. We chose to 
have the data written onto a permanent file so that the distribution can be 
reaccessed when required and plotted, if desired. 

Subroutine WRITE prints the data onto the output file. 

Subroutine PRO& is responsible for the generation of the pi's. The intrinsic 

function, RANF, of course, generates observations from the uniform distribution 
on the interval (0, 1). Each successive value for p beginning with pk is 

computed using the transformation, based on the conditional distribution of pi 
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given pi+,, pi+*, . . . . pk, given in Section 2. The values for p,, p2, . . . . pk 

k 
are generated randomly whereas p0 is set at l- 1 pi, so that the sum of the 

pi's is one. i=l 

Subroutine FANCY is responsible for generating the sets of p;'s and for 

directing the selection of observations from the appropriate multinomial 
distributions. For each set of values of pi;, p;, . . . . pi corresponding to 

values of p0, p,, . . . . pk, one hundred samples each of sizes N and M are 

drawn. The statistic Q is calculated for each sample drawn and the value 
is sent to subroutine COMP which records the value and stores it. Within 
the subroutine there is a method for computing all the values for 

PFl 1 , p*, . . . . p; in two stages. Firstly, we determine which pp's will be 

non-zero. Every non-empty subset of Ipi, p;, . . . . pi;} is tried. Secondly, 

k 
we choose the non-zero pg's so that 1 a.p. - f a.p* = 0, 

j=o J J jzo J J 
or any real number, 

and sip; = 
k 

ajp; for all i,j such that p:, pS # f. Once it is determined that 

1 p; 5 1, the parameter pi; is set equal to l- 1 pt. At this point the sub- 
i=l i=l 
routine directs the sampling of observations from the appropriate multinomial 
distributions. Subroutine MULT is responsible for producing a single observa- 
tion from a multinomial distribution. Subroutine FANCY calls this routine, 
receives the observations, and records it, Following this, subroutine FANCY 
computes the value of the statistic Q and sends it to subroutine COMP which 
records the value and stores the accumulation of values for final output. 
As soon as all the possible values for ~6, pi, . . . . pi; within the framework 

specified have been exhausted, control is transferred back to the main program 
for generation of a new set of parameters po, p,, .*., pk’ 

Subroutine MULT generates a single observation from a multinomial distribu- 
tion with parameters po, p,, ..,, pk. The interval (0,l) is partitioned into 

the subintervals (0,~~)' (po,po+p,), . . . . (po+p, + . . . + pk-T, 1). Suppose we 

label these subintervals 0, 1, . . . . k. A random number is generated using the 
intrinsic function RANF. If the number generated is contained in the interval 
(pO+PT + *" + Pi-T' PO + PT + **' + pi), then an observation for category i 

is recorded and sent back to subroutine FANCY. 

Subroutine COMP receives a realization of the statistic Q from subroutine 
FANCY. The number of observations of the statistic Q belonging to the interval 
of integer values of which Q is a member is incremented by one. This subroutine 
then keeps the accumulation of values for Q which will become the distribution 
of Q. 
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4. PROGRAM LISTING 

100 
200 
300 

9 

11 

10 

2 
1 

5 

4 

1 
2 

PROGRAM MAIN(INPUT,OUTPUT,TAPES=INPUT,TAPEG=OUTPUT,TAPE8) 
COMMON P(15),N(l5),M(l5),PX(15),LQ,NBA(l4O),IVA(l4O),JM(l5),AMN, 

,XBA(140),IXB,XB,IU1,IU2,.KQ(l5) 
FORMAT(4IlO,F10.3) 
FORMAT(1H,140(I5,5X,FlOS/1X)) 
FORMAT(1515) 
READ (5,100) IUl,IU2,IRN,lXB,XB 
READ (5,300) (KQ(MS),MS=1,15) 
CALL RANSET(IRN) 
DO 9 MVT=1,140 
NBA(MVT)=O 
DO 11 JBN=l,lXB 
AA=AA+KQ(JBN) 
AMN=AA/(IXB-1.) 
DO 10 NOP=1,140 
TV=(NOP-71.)*AMN* 
TVA(NOP)=INT(TV) 
K=lOOO 
DO 1 I=l,K 
CALL PROB 
A=O. 
DO 2 J=l ,IXB 
LXR=KQ( J) 
A=A+LXR*P(J) 
CALL FANCY(A) 
AL=O. 
AA=O. 
DO 5 LJ=1,140 
AL=ALtNBA(LJ) 
XBA(l)=NBA(l)/AL 
DO 4 L=2,140 
MMBA=L-1 

1u1* I W/70.-IUl*XB 

AMX=NBA(L)/AL+XBA(MMBA) 
XBA(L)=AMX 
WRITE(8,200) ((IVA(IJU 
CALL WRITE 
STOP 
END 

) ,XBA (IJU)) ,IJU=l , 140) 

SUBROUTINE MULT(I,R,J) 
COMMON P(15),N(l5),M(l5),PX(15),LQ,NBA(l4O),IVA(l4O),JM(l5),AMN, 

,XBA(140),IXB,XB,IUl,IU2,KQ(15) 
DIMENSION R(15) 
A=O. 
B=RANF( I) 
DO 1 K=l ,IXB 
A=AtR(K) 
IF(B.LE.A) L=K 
IF(B.1E.A) GO TO 2 
CONTINUE 
J=L 
RETURN 
END 
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SUBROUTINE WRITE 
COMMON P(l5),N(15),M(15),PX(l5),LQ,NBA(l4O),IVA(l4O),JM(l5),AMN, 

,XBA(140) ,IXB,XB,IUl ,IU2,KQ(15) 
WRITE(6,lOO) ((IVA(I),XBA(I)),I=1,l4O) 

100 FORMAT(lH1,139(21HLESS THAN OR EQUAL TO, 
,15,5X,F7,5/1X),ZlH GREATER THAN,I55X,F7,5) 
RETURN 
END 

SUBROUTINE PROB 
COMMON P(l5),N(15),M(l5),PX(l5),LQ,NBA(l4O),IVA(l4O)~JM(l5),AMN, 

,XBA(140) ,IXB,XB.IUl ,IU2,KQ(15) 
DO 3 J=1,15 

3 P(J)=O. 
A=O. 
KF=IXB-1 
DO 1 I=1 ,KF 
IX=IXB+l -I 
AX=IXB-I 
BX=l ./AX 
X=(1-RANF(I))**BX 
Y=l.-x 
P(IX)=(l .-A)*Y 

1 A=A+P(. IX) 
P(l)=).-A 
RETURN 
END 

SUBROUTINE CHANGE(J) 
COMMON P(15),N(15),M(15),PX(15),LQ,NBA(140),1VA(140) ,JM(15) ,AMN, 

,XBA(140),IXB,XB,IUl,IU2,KQ(15) 
J=J-1 
L=JM( J) 
L=L-1 
Kl =IXB-1 
DO 3 I=J,Kl 

3 JM(I)=L+J-I 
DO 1 IJ=J,Kl 
IX=Kl+J-IJ 
IZ=JM( IX) 
IF(IZ.GT.l) Ll=IX 
IF(IZ.GT.l) GO TO 4 
CONTINUE 
J=Ll 
RETURN 
END 

SUBROUTINE COMP(K) 
COMMON P(l5),N(l5),M(l5),PX(l5),LQ,NBA(l4O),IVA(l4O),JM(l5),AMN, 

,XBA(140),IXB,XB,IUl,IU2,KQ(15) 
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DO 1 1=1,139 
ZJ=(I-7l.00)*AMN*IUl*IU2/70.-IUl*XB 
J=INJ(ZJ) 
IF(K.LE.J) NBA(I)=NBA(I)+l 
IF(K.LE.J) GO TO 2 

1 CONTINUE 
NBA(.l40)=NBA(l40)+1 

2 RETURN 

SUBROUTINE FANCY(X) 
COMMON P(15) ,N(15) ,M(l5) ,PX(l5) ,LQ,NBA(l4O),IVA(.140) ,JM(l5) ,AMN, 

,XBA(140) ,IXB,XB,IUl ,IUZ,KQ(l5) 
Ll=2 
Kl -IXB-1 
DO 1 I=1 ,Kl 
I l-Kl-I+2 

1 JM( I)=11 
J2=Kl 
GO TO 2 

4 Ll=JM( 52) 
IF (J2.EQ.l.AND.Ll.EQ.l) GO TO 9 

1: 
GO TO 12 
IF(Ll.LE.l) CALL CHANGE (52) 
IF(Ll.GT.1) JM(J2)=3M(J2)-1 
GO TO 4 

12 IN=0 
DO 8 14=1 ,Kl 
ILl=I4+1 
IF(JM(I4)qGT.l) IN=IN+l 

8 PX( ILl)=O. 
B=O. 
DO 5 JK=2,IXB 
IXJ=JK-1 
JXA=JM(IXJ) 
CXQ=KQ(JXA) 
IF(JXA.GT.1) PX(JXA)=(X+XB)/(CXQ*IN) 
IF(JXA.LE.l) PX(JXA)=O. 

5 B=B+PX(JXA) 
IF(B.GT.1) GO TO 14 
PX(l)=l.-B 
DO 7 IV=1 ,100 
DO 6 LMI=l ,IXB 
M(LMI)-0 

6 N(LMI)=O 
IN=JV 
DO 11 J9=1 ,IUl 
CALL MULT( IN,PX,JV) * 
IN=JV 

11 M(JV)=M( JV)+l 
IO=IV 
DO 15 K9=l,IU2 
CALL MULT(IO,P,KV) 
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IQ=KV 
15 N(KV)=N(KV)+l 

NQA=O 
MQA=O 
DO 3 JA=2;IXB 
LM=KQ( JA) 
MQA=MQA+LM*M(JA) 

3 NQA=NQA+LM*N(JA) 
LQ=(NQA*IUl)-(MQA*IU2) 

7 ;;UOC;;P ( LQ > 

9 RETURN 
END 
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5. INPUT REQUIREMENTS 

Input requirements for the program consist of two cards. We use the first 
card to input the following information: 

a. The number of trials for each multinomial distribution, 

b. The number of categories, 

C. A random number generator initializer, and 

d. A value for calculating the power of the test. 

We use the second card for assigning weights to the individual categories. 

Card 1: Format (4110, F10.3) 

a Number of trials for the multinomia 
meter vector p, 

1 distribution with para- 

l Number of trials for the multinomia 
meter vector p*, 

1 distribution with para- 

I Random number generator initializer. (Any integer number will 
suffice. Use of the same integer generates a duplicate string of random numbers.), 

m The number of categories in both distributions (this number must 
be an integer between 3 and 15, inclusive), and 

l A real number (x) to be used for power calculations. The 
program generates the distribution of the statistic Q when the parameters have 
the property 

i a (p -p*) = x i=oiii ' 

Card 2: Format (1515). Weights are given as integer values with zero 
being the first weight. Only weights for the number of categories specified 
on the first card are necessary. 
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6. SAMPLE DISTRIBUTIONS 

N = 10 M = 12 

Weights: a0 = 0, a = 2, a2 = 4, a3 = 6, a4 = 8, a5 = 10, a6 =12 

P(Q < u) 

-852 
-840 
-828 
-816 
-804 
-792 
-780 
-768 
-756 
-744 
-732 
-720 
-708 
-696 
-684 
-672 
-660 
-648 
-636 
-624 
-612 
-600 
-588 
-576 
-564 
-552 
-540 
-528 
-516 
-504 
-492 
-480 
-468 
-456 
-444 
-432 
-420 
-408 
-396 
-384 
-372 
-360 
-348 
-336 
-324 
-312 
-300 

.00015 

.00020 

.00022 

.00029 

.00033 

.00042 

.00049 

.00062 
.00073 
* 00093 
.00107 
.00134 
.00155 
.00193 
.00223 
.00275 
.00319 
.00392 
-00450 
-00546 
a00633 
.00763 
.00872 
.01042 
.01189 
-01411 
.01607 
.01899 
.02157 
.02518 
.02852 
.03309 
.03713 
.04279 
.04792 
.05496 
-06136 
-06991 
-07770 
.08792 
.09709 
.10910 
.11994 
.13402 
.14650 
.I6272 
.17708 

I 

6 
1 ai(pi-p3) = -1 

i=O 

P(Q < u) U P(Q e u) 

-288 
-276 
-264 
-252 
-240 
-228 
-216 
-204 
-192 
-180 
-168 
-156 
-144 
-132 
-120 
-108 

-96 
-84 
-72 
-60 
-48 
-36 
-24 
-12 

0 

:i 
36 
48 
60 
72 
a4 
96 

108 
120 
1'32 
144 
156 
168 
180 
192 
204 
216 
228 
240 
252 
264 

.19522 

.21143 
-23188 
.24966 
.27200 
.29146 
.31562 
.33657 
.36208 
-38386 
-41051 
-43325 
-46065 
-48360 
.51107 
.53372 
.56098 
.58343 
.60985 
.63148 
.65667 
-67711 
.70084 
-72007 
.74208 
.75968 
* 77990 
.79598 
.81420 
-82846 
.84480 
.85736 
,87148 
.88230 
.a9466 
* 90395 
.91456 
.92241 
.93146 
-93790 
.94534 
.95061 
-95690 
-96130 
.96636 
.96980 
* 97390 

95 

276 -97670 
288 .97988 
300 -98205 
312 .98462 
324 .98633 
336 .98840 
348 -98968 
360 .99130 
372 .x4227 
384 .99353 
396 .99427 
408 .99525 
420 .99581 
432 .99653 
444 .99689 
456 .99745 
468 .49775 
480 .99818 
492 .99840 
504 .99870 
516 .99885 
528 .99911 
540 .99923 
552 .99937 
564 I99944 
576 .99956 
588 .99961 
600 .99970 
612 1, .99974 
624 .99978 
636 .99981 
648 .99986 
660 -99987 
672 .99991 
684 -99992 
696 .99994 
708 .99994 
720 .99995 
732 -99996 
744 * 99997 
756 .99997 
768 .99998 
780 39998 ) 
792 .99999 
804 -99999 
816 1.00000 



N = 10 M=5 f a.(p.-p*) = 0 
j=O1 ' ' 

Weights: a0 q 0, a, = 5, a, = 8, a, = 9 
L .I 

u P(Q < 4 

-205 .01368 
-202 -01368 
-199 .01572 
-196 .01572 
-193 .01792 
-190 .02032 
-187 .02032 
-184 * 02295 
-181 * 02295 
-178 -02610 
-176 .02610 
-173 .02910 
-170 -03271 
-167 -03271 
-164 .03626 
-161 .03626 
-158 .04105 
-155 .04616 
-152 -04616 
-149 .05172 
-146 .05172 
-143 .05725 
-140 .06357 
-137 .06357 
-134 .07070 
-132 .07070 
-129 -07835 
-126 -07835 
-123 .08614 
-120 .09494 
-117 .09494 
-114 .10463 
-111 .10463 
-108 -11538 
-105 -12634 
-102 .12634 

-99 .13816 
-96 -13816 
-93 .15006 
-90 .16397 
-88 .16397 
-85 .17757 
-82 .17757 
-79 .19305 
-76 .19305 
-73 .20857 
-70 .22514 

l l P(Q < u) 

-67 .22514 
-64 .24274 
-61 -24274 
-58 -26095 
-55 -27950 
-52 .27950 
-49 .29957 
-46 .29957 
-44 .31936 
-41 .31936 
-38 .34067 
-35 .36200 
-32 .36200 
-29 -38338 
-26 .38338 
-23 .40542 
-20 .42765 
-17 .42766 
-14 -45028 
-11 .45028 

-8 -47311 
-5 .49519 
-2 .49519 

0 .52051 
i -54211 .52051 

8 -54211 
ii -56437 -56437 

17 -58516 
i; .60637 .60637 

2 .62808 -62808 

32 .64830 
3": .66750 .66750 

ii .68812 .68812 
/9" .70784 .70784 

52 -72618 
zi .74246 .74246 

z.: -75841 .75841 

67 .77492 

96 

u P(Q < u> 

70 
73 
76 

;; 
85 
88 

;i 

;: 
102 
105 
108 
111 
114 
117 
120 
123 
126 
129 
132 
134 
137 
140 
143 
146 
149 
152 
155 
158 
161 
164 
167 
170 
173 
176 
178 
181 
184 
187 
190 
193 
196 
199 
202 

,79115 
.79115 
.80556 
.80556 
.81963 
.83309 
.83309 
.84654 
.84654 
.85771 
-85771 
.86878 
-87898 
.87898 
.88889 
-88889 
-89821 
* 90729 
.90729 
-91514 
.91514 
.92299 
* 92299 
.92996 
l 93633 
.93633 
.94221 
.94221 
.94747 
* 95222 
* 95222 
.95721 
.95721 
.96149 
-96531 
.96531 
.96896 
.96896 
-97222 
.97222 
-97510 
.97783 
.97783 
.98017 
.98017 

1.00000 
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ABSTRACT. A simulation model is being developed at the Construction Engineering 
ResearchLaboratory for the support of the continuing assessments of the Army Mili- 
tary Construction (MCA) process by the Corps of Engineers. This MCA process simula- 
tion model provides a functional representation and statistical measurements of sys- 
tem response at both the local and global levels, and is intended to be an analytical 
tool for researchers investigating this complex process and for management in under- 
standing and controlling it. All MCA projects proposed for an Army Budget Year Pro- 
gram are processed by the model through all appropriate performance and approval lev- 
els to their final determination. First goals of the model development have related 
to time and cost level determinations for performance functions, specifically the 
planning, programming, design, and construction of military facilities. These 
assessments are ultimately related to the timeliness and economics of the construc- 
tion product. 

1. INTRODUCTION. The Army Military Construction (MCA) process is a term used 
to identify the web of interacting procedures, management systems, and 
requirements/regulatSOns which bring a needed construction project from an Army 
installation's proposa 1 

L!i 
hrough all intervening development stages to the turnover of 

the finished facility. 

The Corps of Engineers (CE) is the largest construction agency in the world, 
processing $10 billion in constructfon for Fiscal Year 1982 (FYBP) alone. The mili- 
tary construction portion of this budget is nearly $1 billion and holds,consistently 
at about 10% of the CE budget. The MCA process utilizes this substantial budget to 
provide needed military facilities; any improvement in the MCA process will be 
economically significant if it impacts the quality, timeliness, or price of the 
facilities delivered. 

. *Visitor at the University of Illinois. 
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Analyzing the MCA process can be complicated by the multidimensional nature of 
the process and can be made even more difficult when multipurpose objectives are 
included in the assessment task. The existing MCA process reflects the past evolu- 
tionary needs of Corps construction management and the hierarchical organization 
which implements this management. This results in back-and-forth transfers of 
responsibility over many layers of authority. Furthermore, the complexity of the 
processing systems and the number of projects handled make it difficult to develop an 
analytical grasp of the entire MCA operations network and the problems such a network 
can sometimes encounter. A conveni 

ITI 
method of visualizing such complex processes 

is through network representations. 

2. MODELING THE MCA PROCESS. Although network representations of the MCA pro- 
cess should be developed at a level of detail appropriate to the requirements of the 
intended analysis, "real-world" constraints must be considered. There will usually 
be analytical time limitations, network size limitations, unavailability of func- 
tional data (data requests can disrupt field operations), and the hierarchical orien- 
tation of the analyst. Even when some of these constraints can be accommodated, the 
inherent complexity of the MCA process cannot be avoided. It is this complexity in 
both the representing and the represented that discourages a formalized and con- 
sistent approach in assessing MCA processing problems. 

A proper modeling of the MCA process depends 
aspects or "dimensions" associated with this deve 
for replicating the hierarchical process with the 
level of detail are fundamental to the analysis. 
reasonably convenient and sufficiently responsive 
development of timely solutions. 

upon a recognition of the many 
lopment (Figure 1). Requirements 

appropriate logic at an effective 
In addition, the approach must be 
to permit the investigator a 

The logic of the functional relationships of the MCA process can be "sculptured" 
into the network format so as to be visibly representative of the process environment 
and demonstrably responsive in meeting analytical requirements. It was dete!rmined 
that the modeling of th MCA process will be most conveniently achieved through 
a "procedural network." ff 

5 otal 
A "procedural network" is defined as a network in which 

the nodes indicate the decision-points/functions and the arcs represent the flow of 
responsibilities and/or information associated with project development. Hence, this 
network identifies events of interest (decision-points/functions) by nodes or boxes, 
with the task processing at any particular decision node dependent upon the stochas- 
tic history of the project and the network logic up to that point. The precedence 
relationship in the network reflects the organizational hierarchy and the typical or 
required sequences for processing MCA projects. Precedence requirements define the 
network configuration and are controlled by such factors as management policy, task 
characteristics, and procedural regulations. As indicated in Figure 1, there must be 
a hierarchical representation, a level of detail and an extent of coverage developed 
for the network which respectively reflect the precedence relationships, sensitivity 
requirements and a range of interest applicable to the particular MCA problem under 
study. 
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These precepts have permitted the development of an MCA process network which 
represents all significant procedural paths that can occur in the process. Figure 2 
identifies the scope of this network up to construction contracting. In interpreting 
this diagram, it should be understood that the flow of one project or all projects 
can be considered, and project entities or segments of projects may be processed 
according to local procedural needs. This is a project controlled process. The 
characteristics of the construction projects processed by the network must control 
the functional response, the decision points, and the flow paths of projects through 
the network. These relationships, ideally determined from statistical descriptions 
of actual MCA process experience are at the least related to facility type (project 
complexity) and size (project price). The complexity of these factors and the number 
of projects involved in the process are not easily handled by any means other than by 
digital computer simulation techniques. 

3. SIMULATION OF THE MCA PROCESS. An effective simulation of the MCA process ___I ,_I---- - 
depends on the development of a representative network and an efficient and compati- 
ble simulator system. The simulation modeling approach can provide statistical 
descriptions of the MCA process derived from either direct functional or surrogate 
representations which are correlatable to the "real-world" process (Figure 3). Thus, 
the model is an analytical tool providing rapid answers in a standardized form to the 
analyst, but still subject to his reasoned interpretation. Basic to these assess- 
ments are the procedural efficiencies and time/cost/resource-impact considerations 
associated with the functional performance of the process. Performance-level assess- 
ments of this process can only be achieved by a simulation model which is capable of 
processing sophisticated procedural networks. 

A simulation system which could meet all of the requirements associated with 
analyzing the MCA process was not a "shelf" item. Of the several simulation 
languages which are available, the Generalized Network Simulator (ENS), as initially 
developed at the University of Illinois, was selected. This computer simulation pro- 
gram is written in FORTRAN IV and was designed to simulate generalized stochastic 
networks primarily as applied to manufacturing processes. The GNS approach was 
adapted and modified at the Construction Engineering Research Laboratory (CERL) to 
support procedural networks and MCA process assessment requirements. The computer- 
ized pr'ogram permitting this simulation is called the Corps of Engineers Generalized 
Network Simulator (CEGNS), and represe 

El 
a parallel development to the Generalized 

Manufacturing Simulator (GEMS) System. Both CEGNS for simulation procedural net- 
works and GEMS for simulating product-assembly type networks 

PS5 
derived from the GNS 

concept, as proposed by Hogg, Dessouky, and Tonegawa in 1977. 

Simulation Model Features. The MCA process simulation model is seen as being a com- 
puterized representation of a procedural network which depicts the functional steps 
involved in bringing an Army construction project from the proposal state to a fin- 
ished and accepted facility. The model must simulate the total project flow, includ- 
ing project acceptance/rejection; it must approximate the impact of project charac- 
teristics and volume (workload) levels; and it must allow for interactions between 
performance functions as well as other dollar and time significant effects. This 
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modeling system will enable the analyst to create a simulation network under nominal 
rules and restrictions and to apply this algorithm to his problem areas without the 
inconvenience of diversionary tasks. He should not, for instance, have to face a 
monumental computer programming job when there is a requirement to simulate an exten- 
sively revised network. A good computer simulation program will effect an efficient, 
dynamic handling of network logic, permitting simulation network definitions as well 
as problem requirements to be input in relatively simple statements. 

The Simulator. The CEGNS simulation system was developed to effectively accomplish 
general MCA simulation goals without restricting model growth and expanding require- 
ments. The CEGNS and MCA model developments have been iteratively improved by 
repeated testing and modifications (Figure 4). The resulting model is a functioning 
version of the MCA model which has evolved with steadily improving sensitivity. The 
product of this development was a Study Model utilized as a development vehicle for 
establishing the criteria applicable to future operational versions of the model. A 
fundamental feature of the CEGNS simulation modeling system is its capability to 
replicate a procedural network. Figure 5 shows the distributions of actual and simu- 
lated AE design times from Sacramento District data for FY80 projects. The distribu- 
tion predicted by the MCA simulation model in this figure closely approximates the 
distribution of the "real-world" process. 

STUDY MODEL. 4 l The Study Model has been used to test the assumptions and-ver- 
ify the conclusions of the simulation study. Although the model is incrementally 
improved as the study advances, its basic features and application goals developed 
for evaluating the MCA process have not changed. 

MCA Assessment Features. Special features of the Study Model include: 

(a) Time/cost/resource expenditure measurements for each process function. 

(b) Full MCA process network representation. 

(c) Global/local frame-of-reference capability. 

(d) Special performance-indicator and display outputs. 

Other special operating features include a selectability in input and output formats 
and a choice of data processing aids especially developed for MCA analysis require- 
ments. Printouts of MCA simulation runs will include many useful and informative 
features for the analyst, such as echo-checks of the input, a listing of projects 
supplied or generated, in-process traces, and output summaries in statistical format. 
Statistical summaries can be provided as follows: 

(i) The number of projects held-up, lost (if any), and processed at all queue 
boxes. 

(ii) A listing of all projects passing through any selected activity box. 
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(iii) A histogram of the time-intervals of all projects flowing between speci- 
fied activity boxes. 

(iv) A bar chart of the number of projects waiting to be processed at any 
specified queue box over any specified time period. 

1 v:1 An accumulating event-calendar of projects (number of projects processed 
vs. absolute time) for any phase(s) of the MCA process selected for 
analysis. 

Example Applications. Trial assessments of the MCA process by the study model are 
now discussed to illustrate the power of the simulation approach. The first problem 
to be examined is definitive in nature and initially requires the type of simulation 
used for evaluating new procedures with limited impact. The second problem proposes 
a change with a far-reaching impact on all high cost projects; the relaxation of 
three process constraints are involved;xd more sophisticated modeling features are 
required. 

(a:1 A Simplified Assessment Problem. It is desireable to compare the poten- 
tially shorter construction procedures associated with prefabrication and 
industrialized-building approaches to the traditional procedures which 
utilize custom designs and on-site preparation of structural assemblies. 
The procedures will be compared on the basis of overall processing times. 

This may be considered first as a problem in establishing basic differences in pro- 
cessing efficiencies (to be followed by global reviews based on the verified pre- 
cepts). A needed simplification is the processing only of projects relevant to the 
study. This eliminates the imposition of unwanted variables such as the scheduling 
assumptions, sequential-processing effects and district workload considerations 
implied by a total project environment. A very simple initial approach could con- 
sider two facility classes (low to high complexity) and two size (price) categories, 
small and large. This results in an easily controlled study of four projects pro- 
cessed by a minimum of two computer runs, one for each of the construction 
approaches. The combined results shown in Figure 6 identify the time advantages of 
the industrialized building approach as an illustration of the analytical use of 
CEGNS outputs. 

(b) Multiple Constraint Problem, A hypothetical proposal is assumed which 
requires a procedural change in the approval of high cost Architect and 
Engineering (AE) contracts over $500,000. In the present procedure, all AE 
contracts greater than $ZOOK are reviewed by the Division Engineer; all AE 
contracts greater than $500K are reviewed by the Office of the Chief of 
Engineers (WE); and all AE contracts of $1 million are also reviewed by 
the Department of Defense (DOD). In the hypothesized procedure, only the 
Division Engineer reviews high cost AE contracts, with OCE notified and 
coordinated with whenever contracts of $1 million or more are processed. A 
cost benefit determination for the proposed change is requested. 

103 



A "mix" of 500 proposed construction projects is statistically generated, each 
with ten descriptors defining the unique characteristics of each project. Figure 7 
gives a sampling of these synthesized projects. 

In simulating these projects, it can be seen that in the winnowing assessments 
by the Major Commands (MACOMs) and OCE, the number of projects has decreased to 380. 
These "official" FY projects are distributed to five divisions representing the ten 
districts which process MCA projects. A district was "selected," and 100 of the 380 
projects were processed by this district. Three comparative runs were made for each 
assessment: 

(iI Normal configuration run. 

(ii) Hypothetical-change configuration run. 

(iii) "No restriction" (fast-track) configuration run. 

In these three simulation runs, all configuration and branching factors as well as 
controllable stochastic events are kept the same -- except for the simulated condi- 
tional approvals for the projects as required by the problem. 

As part of the output for each of the runs, planning durations, programming durations 
and design times were statistically plotted for all processed projects. (See Figure 
8 for a typical output from a normal run as an example of these products.) In addi- 
tion, a programming output calendar for the 27 projects with an AE fee above $200,000 
which completed final design was generated for each run (Figure 9). This project 
output display illustrates the time between the normal (basic), hypothetical (no 
upper AE approval), and limiting (no restrictions) runs. As shown in Figure 10, 
there are more significant savings in projects with longer design processing times. 
Table 1 summarizes the 27 projects and their impact on the MCA process. For the 
assumptions made, it was determined that the cost of the net delay per high cost pro- 
ject was approximately $60,600; where "delay" implies the time difference between the 
normal and hypothetical runs. Under the assumptions made for this hypothetical pro- 
posal, $60,600 amounts to approximately a 1% saving, which is probably not suffi- 
ciently significant to justify the change -- even if feasible under other considera- 
tions. Such results can assist a decision maker in evaluating proposed changes to 
the MCA process. 

Evaluation of Study Model Capabilities. It is evident from Study Model applications 
and experience that the simulation approach provides a powerful tool for analyzing 
the MCA process. If sources of real-world response data can be developed, the 
present model can be advanced further through verification and updating procedures. 
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Table I 

Significance of Hypothetical Change 

27 Project 
Contract AE Adjusted Fat.-Use All 27 Hi Cost(AE) 

Project D, Price Fee Delay: Value Projects Projects 
No. Hrs. $M $K Days $/Day Delay $ Delay 8 

209 
86 

146 
71 

255 
103 
81 
74 

309 
100 
414 
122 
138 
133 
113 

1;; 
75 

175* 
284 
87 

213* 
105* 

35 
327 

23” 
10 

20 
10 

-1; 
-20 
-10 
-30 
-40 

ii 

2 
130 
150 

ii 
40 

1;: 
120 
-30 
242 
120 
140 
z-z2 
280 

0 

5 229 
; 238 275 

7 264 
7 290 
8 301 

11 433 
7 291 

:: 206 456 

1; 327 251 
12 248 
13 274 
12 488 
11 457 
:i 286 334 

14 561 
19 396 
:; 871 364 

14 550 
27 * 225 
13 266 

E 890 258 

3 
2 

-; 
-3 
-2 

145 

; 

1: 
17 
19 

:Fl 

i 
14* 
15 
-4 
31* 
15” 

PA: 578913 

715 2145 
1000 2000 
860 0 

1000 -2000 
1000 -3000 
1143 -2286 
1590 -6360 
1000 -5000 
1430 12870 
1590 12720 
1143 10287 
1714 17140 
1714 29138 
1860 35340 
1714 17140 
1590 15900 
2290 11450 
2000 16000 
2000 28000 
2714 40710 
2571 -10284 
3143 97433 
2000 30000 
3857 69426 
1857 50139 
3143 110005 
3571 0 

Future Worth: 6,669,077 

FW-PW: 6,090,164 

Significance 
Net Delay 8: $528,660 $242,400 

Net Delay $/Project: $19,600 $60,600 

28000 

97433 
30000 

110005 

265438* 

3,057,846 

2,792,408 

Net Delay $ = PW [l - (l+i)-“1; i = 8% inflation t 5% interest. 
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5. CONCLUSIONS. The types of engineering network models which can effectively -- --_ ---- 
represent the MCA process and the scope of the computer simulation developments to 
implement these representations have been brought into focus by the current study. 
It has been concluded that the CEGNS computer simulation system will support a simu- 
lation model of the total MCA process at all required levels of detail. The simula- 
tion approach selected will permit rapid assessments of proposed changes in "real 
world" procedures, and can be used for diagnosing most problems that arise in opera- 
tions at the management and field performance levels. 

Existing Capabilities. The Study Model has replicated MCA procedures from the time 
of project formulation to construction completion. The Study Model demonstrated the 
capacity of the CEGNS simulation modeling system to support the required levels of 
analysis. CEGNS requires relatively little change in the input stream for solving 
two problems with minor differences. This capability allows the analyst to vary both 
the input requirements of the problem and the problem itself in order to determine 
any instability or lack of response in the solution. The adequacy of the structural 
and processing concepts of the Study Model has been demonstrated. Verification of 
this model from detailed operations information, plus, computer-processing efficiency 
adjustments, can result in a "Prototype" MCA Process Simulation Model requiring only 
a fina 

Pi 7 
alibration and validation phase before delivery as an "operational" 

model. 

Future Developments. 
tial. 

The MCA Simulation Model will have a broad applications potcn- 
The current Study Model has been demonstrated in the research mode and can now 

be used in comparative investigations such as measuring the relative impact of pro- 
posed changes in the MCA process. Experience gained from exercising the Study Model 
has provided the base (criteria) for developing an MCA Process Simulation Model of 
greatest benefit to the Corps. This model can contribute to improved procedures- 
analysis; improved management control (impact forecasting, optimal product schedul- 
ing, resource allocation studies, etc); and the assessment of special problem areas. 
Confidence in the output of an "operational" MCA Process Simulation Model will be 
strengthened if it is supported by a sig * 

E% 
icant data bank which has been developed 

in response to determined modeling needs . This dataTank should contain key 
information that correlates external influences and events with the decision func- 
tions which impact the MCA process. The data bank can contribute to the creation of 
a more realistic generation of projects and attribute assignments for these projects. 
It will be a source for calibration values to be applied to network logic and subse- 
quent adjustments to this logic. Finally, it will be a principal reference in verif- 
ication arguments. 

Future development objectives require the refinement of model capabilities to 
that of a convenient and useful analytical tool (see Table II). The model must 
represent program fluctuations or imposed procedural changes with a precision suffi- 
cient to match computer responses to the corresponding "real-world" response. These 
refinements will permit the convincing demonstrations required of an operational sys- 
tem. Only through such demonstrations can the level of confidence be promulgated 
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which is necessary for the model output to be considered a primary argument in CE 
evaluations of the MCA process. 

Table II 
MCA Process Simulation Model Development Objectives 

1. Replicate network flow. 
2. Perform time/cost/resource expenditure measurements. 
3. Approximate the performance response of process functions in the network 

to real-world response. 
4. Incorporate macro/micro network focusing (modules with graded detail). 
5. Consider study-support flexibility; provide selectable outputs. 
6. Allow for exogenous influences. 
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OCE / CRRC REVIEWS 8 CONTROL 
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Figure 1. Dimensional ranges of the MCA process. 
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TUTAL MCA PROCESS 
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Figure 2. Network diagram of the MCA process to construction contracting, 



hE/CRRC REVIEW 

SIMULATION 

--I 

OUTPUT 

Figure 3. A simulation concept for the MCA process. 

MODELING 

1 

SIMULATION 
I 
t 

REQUIRiMEtiTS i REQUIREMENTS 

t 
VERIFICATION 
CALIBRATION 

VALIDATION 

Figure 4. The iterative development of an MCA simulation modeling system. 
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AE DESIGN COMPLETION TIMES FOR 
SPK FY80 PROJECTS 

0 SIMULATED DESIGN TIME 
l ACTUAL DESIGN TIME 

STIJW MODEL 

PROJECT RECORDS) 

om 0 l 

n*n~o*** 

0 2 4 6 8 10 I2 I4 I6 18 20 22 24 MONTHS 

Figure 5. AE design-time distrjbutions for FY80 projects from a 
Study Model simulation run and from actual performance 
records. 
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SYNTHESIZED PROJECTS 

J J 
PROJECT NO. DIVISION 
(PRIORITY) 

MAiOR 
COMMAND 

RF LOCATION/SITE 
INFORMATKWJ 

Figure 7. Sample from printout of a list of synthesized projects 
and their attributes. 

f- i 

_. 1.. . 

:;--& 
2 :oo 

Figure 8. Simulated planning-phase times for 500 MCA projects. 
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Figure 10. Processing-times vs. accumulated project $ values. 

115 



REFERENCES 

1. Army Regulation, "Project Development and Design Approval," AR 415-20, DA, Revi- 
sion Draft (1979). 

2. Fishman, G.S., Concepts and Methods in Discrete Event Digitial Simulation, 'Wiley, 
NY, 1973. 

3. Ghiassi, M., "An Evaluation of the CEGNS Modeling System for the MCA Process," 
Letter Report, Presented to CERL 30 April 1981. 

4. Hogg, G. L., M. I. Dessouky and K. Tonegawa, "Generalized Network Simulator," 
Presented at the Joint ORSA/TIMS/AIEE National Meeting, Atlantic City, NJ, 70-9 
Nov 77. 

5. Johnson, J. H., "Information Flow for Military Construction," CERL-IR-ADS-P, Con- 
struction Engineering Research Laboratory, Champaign, IL, Ott 76. 

6. Mesarovic, M. D., 0. Macko, and Y. Takahara, Theory of Hierarchical, Multilevel 
Systems, Vol. 68 in the "Mathematics in Science and Engineering" series, Academic 
Press, NY, 1970. 

7. Naylor, T., Computer Simulation Experiments with Models of Economic Systems, 
Wiley, NY, 1971. ("Validation", Chapter 5.) 

8. Philips, D. T., M. L. Handwerker and P. Piumsomboon, "A Users Manual for GEMS, A 
Generalized Manufacturing Simulator," NSF/RANN Project, Grant No. APR76-22610, 
Dept. of Industrial Engineering, Texas A&M University, 1 Sep 79. 

116 



NUMERICAL SOLUTION OF THE BOUNDARY LAYER EQUATIONS AT THE 
SHOCK/SURFACE INTERFACE BEHIND A IIEYISPHERICAL BLAST WAVE 
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U.S. Army Ballistic Research Laboratory 

U.S. Army Armament Research and Development Command 
Aberdeen Proving Ground, Maryiand 21005 

James E. Danberg 
Department of Mechanical and Aerospace Engineering 

University of Delaware 
Newark, Delaware 19711 

ABSTRACT. This paper discusses the solution of the boundary layer 
equations at the intersection of a hemispherical blast wave and a ground plane 
over which it is moving. A coordinate stretching transformation is used to 
eliminate the singularity at the shock/surface interface and reduce the 
governing equations at the interface to a set of ordinary differential 
equations. The solution of the equations at the interface is presented. 

The original governing equations consist of a set of three, coupled, 
nonlinear partial differential equations. The coordinate transformation 
produces a set of three, coupled nonlinear ordinary differential equations at 
the shock/surface interface. Boundary conditions are given a,t the surface and 
at an infinite distance from the surface, forming an asymptotic two point 
boundary value problem. A method developed by Nachtsheim and Swigert is 
employed to reduce the problem to an initial value problem. An initial 
estimate for two unknown gradients at the wall is made and an iterative 
method is used to systematically reduce the mean square error in the solution 
at the outer edge of the boundary layer by changing the estimates of the 
gradients at the surface. This method requires the formulation and solution 
of six additional ordinary differential equations which are coupled to the 
first three. A Kutta-Merson method is used to solve the nine coupled 
equations. The result is a solution to the original equations, plus a 
correction to the two estimates of the gradients at the surface. The 
iteration procedure is repeated until the solution at the outer edge of the 
boundary layer agrees with the given conditions to within some specified 
degree of accuracy. 
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NOMENCLATURE. 

‘T radial distance from center of the hemispherical shock 

w angle measured from the surface upwards 

Rs radius of the shock front 

us velocity of the shock front 

U 
P 

particle velocity at the shock front 

Ts temperature at the shock front 

pS 
pressure at the shock front 

Ps density at the shock front 

Ta ambient temperature 

'a ambient density 

V a kinematic viscosity of the ambient air 

‘a 
viscosity of the ambient air 

'r Prandtl number of the ambient air 

C 
P 

Specific heat of the-ambient air 

cR gas constant for air 

K thermal conductivity of air 

TW 
temperature at the surface of the ground 

U 
11 transformed angular distance given by n = rw P 

Rs-r) wa 

fir transformed radial velocity given by Ur = U,/U 
P 

% 
v 

transformed angular velocity given by qw = $ 
(is-r) U 

V 
P a 
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6 transformed density given by p" = p/p, 

T transformed temperature given by ? = T/Ts 

E normalized radial distance given by 5 c r/Rs 

'I normalized time given by T z tU /R 
P s' 

T w transformed surface temperature Tw = Tw/TS 

.Y e fir transformed radial velocity 

4 E cw transformed angular velocity 

0 = i transformed temperature 

aii 
I - 

Y 
s a*r 

= a? 
0 -ay 

Y 

a24 
\y’ it - 

Y aYaq 

a3Gr 

y5; = _ axa$ ’ 

a3i 
@ii = - axa2n ’ 

a3fi (y? = - 
Y ayao2 

% z Tw transformed surface temperature 

A 
uS coefficient given by A G 2~ 

P 
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B coefficient given by B 2 'e 'a Ta pe Ta 
CR Ts2 ua = C T * p Rs a 

L 

C coefficient given by C F 'e Ta 'a 'r 'e Ta 'r 

'R Ts2 'a = 'R Ts? Pa 

u* P 
D coefficient given by D G $$$ 

P = 
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1. INTRODUCTION. When a nuclear weapon or high explosive charge is 
detonated in the atmosphcrc a blast wave is formed. At the front of the 
blast wave is a shock surface which separates two regions of gas in different 
states. In front of the expanding shock surface, the gas is at rest and at 
ambient pressure and temperature. As gas is engulfed by the moving shock, it 
undergoes a discontinuous jump to higher pressure, temperature and velocity. 
In the blast wave behind the shock, the pressure and velocity decay with 
distance from the shock. In strong blast waves near the detonation point, 
the temperature increases with increasing distance from the shock. 

In order to study the strong blast waves which are formed just beyond the 
fire ball region of a large explosion, a point detonation model is often 
used. In the point detonation model the physics of the detonation is ignored 
and a spherical blast wave is considered to be formed by the instantaneous 
deposition of a large amount of energy at a point in space. The first analyt- 
ical solution for the motion of a strong blast wave formed by a point detona- 
tion was the Taylor-Sedovl similarity solution. The Taylor-Sedov solution 
gives the motion of a spherical shock front and the pressure, temperature and 
velocity of the gas behind the front. The solution can be modified to solve 
the problem of a point detonation on flat surfaces. In this case the effec- 
tive energy is doubled and the shock surface becomes hemispherical. (see 
Figure 1) 

An implicit assumption in the Taylor-Sedov solution for a hemispherical 
blast wave is that the flow is inviscid. All real gases are viscous, however. 
To accurately model the blast wave flow near the surface, viscous effects 
must be taken into account. 

When a viscous gas flows past a stationary surface, the gas directly 
adjacent to the surface sticks and remains at rest. The stationary gas at 
the surface acts to decelerate the gas adjacent to it, which in turn dcceler- 
ates more gas. In this manner, a small but finite transition region developes 
in which the gas goes from zero velocity at the surface to the undisturbed 
velocity far from the surface. An analogous temperature transition region 
also developes in the flow. For an isothermal surface, the gas directly 
adjacent to the surface remains at surface temperature. The temperature of 
the gas beyond the surface increases through a small transition region until 
it reaches the undisturbed flow temperature fax from the surface. The veloc- 
ity and temperature transition regions are known as the velocity and thermal 
boundary layers. Both types of boundary layers are present in blast wave 
flow. 

The boundary layer flow behind the shock surface starts out as a laminar 
flow, i.e. a flow in which disturbances tended to die out. As the flow moves 
away from the shock, it very rapidly becomes a turbulent flow, i.e. a flow in 
which disturbances tend to grow. Bccauses this paper is concerned with flows 
only very near the shock surface the equation governing laminar boundary 

‘layer flow will be used. 

Two solutions have been developed for the boundary layer flow within a 
hemi.sphcrical blast wave. Roth the solution due to Crawford, et.a12 and 
the solution due to S. W. Liu and tl. Mirels3 depended on the similarity 
property of the flow. The similarity assumption limits the validity of the 
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solution to the high pressure region near the detonation. In order to 
extend the solution into the low pressure region far from the detonation, a 
study is now underway to formulate a solution that does not depend on a simi- 
larity assumption. Because the solutions of Crawford and Liu do not agree on 
the temperature profile behind the shock, 
solution will help clarify this matter. 

it is also hoped that the planned 

The planned solution is based on a finite difference scheme. The scheme 
requires three initial conditions and seven boundary conditions. The init ial 
conditions will be taken from Crawford et.al. Three of the boundary conditions 
will come from the known conditions at the surface. Two of the boundary 
conditions will come from an inviscid outer flow solution. The final two 
boundary conditions must come from a solution at either the shock/surface 
interface or detonation point. 

Singularities exist at both the detonation point and the shock/surface 
interface. For a point detonation, the temperature goes to infinity at the 
center of explosion, which results in the singularity. The singularity at 
the shock/surface interface results from the requirements of shock theory and 
boundary layer theory. Shock theory requires that gas engulfed by the shock 
jump discontinuously from a state of rest and ambient temperature to a state 
of higher velocity and temperature. Boundary layer theory requires that the 
gas adjacent to the surface remain at rest and at surface temperature. (see 
Figure 2) An attempt was made to find a coordinate transformation which 
would eliminate both singularities allowing a solution at both ends of the 
blast wave; none was found. A transformation was found, however, which 
allowed an asymptotic solution at the shock/surface interface alone. 

The transformation used to eliminate the singularity at the shock/surface 
interface is based on the simularity transform from the Blasius flat plate 
solution .4 The boundary layer problem behind a hemispherical shock does not 
meet the necessary conditions to have a similarity solution. The solution 
can, however, be considered locally similarly near the interface. Near the 
interface the transformation reduces the governing equation from a set of 
partial differential equations with three independent variables to a set of 
ordinary differential equations with the similarity variable n as the indepen- 
dent variable. The asymptotic solution at the interface based on the simi- 
larity transform is the topic of the rest of this paper. 

2. THE BASIC GOVERNING EQUATIONS, There are three basic equations 
governing unsteady compressible boundary layer flow. The first equation is 
the Continuity Equation, based on the conservation of mass. The second 
equation is the Momentum Equation, based on the conservation of momentum. The 
third equation is the Energy Equation, based on the conservation of energy. 
Because of the geometry of the problem, the two dimensional Cartesian form 
of the, equations have been transformed to their axisymmetric spherical form 
(see Figure 3). To simplify the equation w, shown in Figure 3, has been 
substituted for Q. Further, it has been assumed that w is small so that 
sin w = w and cos w = 1, The resulting equations are shown below. 
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HEMISPHERICAL SHOCK FRONT 
DUE TO A POINT DETONATION 

Figure 1. Hemispherical Shock Front. 

SHOCK / BOUNDARY LAYER INTERFACE 

SINGULARITY 

Figure 2. Singularity at the Shock/Boundary Layer Interface. 

123 



2 
A r 

COORDIN 
SYSTEM 

ATE 

Figure 3. Coordinate System. 

Continuity Equation 

ap 1 
at:+7 & (r2Pur) + ; & (pv,) = 0 

Momentum Equation 

Energy Equation 

In these equation, n is the density, t is time, Ur is the radial 

velocity , r is the radial distance, w is the angle measured from the surface 
upwards, VW is the angular velocity, Pe is the pressure in the outer flow, p 

is the viscosity, Cp is the specific heat, CR is the ideal gas constants and 

K is thermal conductivity. 

In addition to the three basic equations, there are three assumptions 
that have been made in formulating the problem. First, it has been assumed 
that the gas obeys the ideal gas equation of state p = P/CRT. Second, that 

the Prandtl number is constant Pr = (UCp/K) = constant. Finally, that the 

viscosity is a direct function of temperature n = p,(T/T,). 
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3. TRANSFORMING AND NORJlAI~IZING THE BASIC GOVERNING EQUATIONS. In order --- 
to eliminate the singulari?yst the shockzrface interface, the basic equations 
are transformed in terms of the following variables. 

v 
VW = $ 

d 
IRS -r) u 

v 
P 

In th,e transformation Rs is the shock radius, va is the Kinematic viscosity 

ahead. of the shock, U 
P’ 

ps and Ts are the flow velocity, density and tempera- 

ture at the shock front. The transformation which give -r, F,, Ur, i and ? 

serve only to nondirncnsionalizc and normalize the variables. Transformation 
for TJ allows us to eliminate the singularity located at the shock radius, Rs. 

The three basic equations have been rewritten in terms of the new 
coordinate system. In addition, _ the ideal gas equation of state has been 
used to eliminate 6 in terms of T and Pe. The viscosity p has been eliminated 

in terms of T and the constants T a and u,. The thermal conductivity K has 

been eliminated in terms of T and the constants Pr, C , Ta and na. The 
P 

resullting set of three coupled, partial-differential equations is given below. 
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Cdntinuity Equation 

Cl-t3 rl [ 1 ati R5 Cl-E.3 ape 
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Momentum Equation 

6) a tir 

at 

A R$-S) Cp Usq 2U r 
2u2. -- 2u 
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( ) arl- + 

P P 

us6 (1-g aij [ 1 U ( ) 
P 
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Energy Equation 

%I1 -- 
2u 

P 
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4. TRANSFOFWFD GOVERNING FQUATION AT THE SHOCK/SURFhCF INTERFACE. As -.- ------- the shock/surface interface is approached r -b Rs and thereforc 5 -+ 1. Thus 

as the interface is approached, terms with (c-1) in the numerator drop out. 
We are left with derivatives with respect to rl only. The continuity equation 
simplifies to n 

the Momentum Equation becomes 

final.ly, the Energy Equat.ion becomes 

(33 

The governing equations require five boundary conditions for solution, 
three at the surface and two in the outer flow. At the surface the velocity 
gas must go to zero i.e. LJr = V = 0. In addition for an isothermal surface 

w 
the gas temperature T must equal the surface or wall temperature Tw i.e. 

T = 8: 
W’ 

Boundary layer theory requires that Ur and T asymptotically approach 

the values of radial velocity and temperature found in outer flow, which leads 
to the following conditions Ur -+ 1 and T + 1. The five conditions are 

summarized below. 

at r)=o 

tir = c, = 0 and T = Tw 

as tl-+rn 

iJ/ 1 and ‘? + 1 

With only derivatives of n left in the equation, we can now regard them 
as a coupled set of ordinary differential equations (0. D. E.‘s) rather than 
a set of coupled P. E. D.‘s. Changing to a simplier notation we obtain the 
foll.owing . 
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Continuity Equation 

Ar, + ;x - $10’ +(+I 

Momentum Equation 

Y1l=-$ 
[ 

A,+$- @ yy’- 1 $ O’Y 
Energy Equation 

o”= -$ An+gm 0 0’ 
I 

012 
- DYV2 - o 

Boundary Conditions 

at n = 0 y = $ = 0 and 0 = ow 

In this notation, the primes denote differentiation with respect to n. The 
coefficients A, B, C and D are independent of rl, 

,5 . ASYMPTOTIC SOLUTION AT THE SMOCK/SURFACE INTERFACE. The outer flow 
boundary conditions make the problem an asymptotic boundary-value problem. 
In orderdto make use of conventional algorithms for the integration of 
0, D. E.‘s, the problem must be transformed into a initial-condition problem. 
A method developed by Nachtsheim and Swigert of the Lewis Research Center6 is 
used. Two additional boundary conditions at the surface are substituted for 
the two conditions in the outer flow. The new conditions at the surface re- 
quire that Y I = X and 0’ = Y when n = 0. The correct values of X and Y are 
unknown initially and must be determined as part of the solution. 

The method of solution is iterative. In the initial iteration, the 
values of X and Y are guessed. X and Y are used to start an integration from 
the surface to some large value of n: n edge. The results of the integration 
at 0 edge are used to estimate the error in the solution in the next iteration 
after a change in X and Y of AX and AY. AX and AY are adjusted to minimize 
the error. X and Y are changed by the resulting AX and AY. The n.ew X and Y 
values serve as the basis for the next integration to n edge. The process is 
repeated until the estimated error falls below a pre-set limit, at which 

-point the problem is terminated. 

The estimated error, which serves as the basis for convergence, is found 
by expanding the solution about X and Y. The values of Y and 0 at r~ edge are 
considered to be functions of X and Y. The values of Y and 0 in the next 
iteration are estimated using the first three terms of a Taylor series 
expansion. The difference between the estimated values of \y and 0 at n edge 
and their known value in the outer flow make up part of the estimated error. 
Experience has shown that two additional conditions in the outer flow must be 
imposed on the solution to insure that it is unique. The additional. 
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conditions require that the radial velocity and temperature in the boundary 
layer approach the outer flow asymptotically, i.e. yy' 4 0 and 0' + 0 as n -+ =. 
The values of y' and 0' at n edge are estimated in the same manner as Y and 0. 
The difference between the estimated values of Y' and 0' at n edge and their 
known values in the outer flow makes up the final part of the estimated error. 

The four errors which make up the total estimated error in the solution 
are designed 61, 62, g3 and 64. 61 and 62 refer to the difference between the 

known and estimated values of Y and B respectively. 63 and 64 refer to the 
difference between the known and estimated values of Y’ and 0’. The equations 
for Sl, S2, 6g and 6q are shown below, 

% 3 Y (n edge, X + AX, Y + AY) - 1 = 

‘i’ (n edge, X, Y) + Yx (n edge, X, Y) AX + yry (n edge, X, Y) Ay - 1 = 

'I' + YxAX + \yyAY - 1 

62 E 0 (r, edge, X + AX, AY) - 1 = 

0 (n edge, X, Y) + Ox Crl edge, X, Y) AX + o y (n edge, X, Y) AY - 1 = 

0 + OxAX + OyAY - 1 

cl3 = Y' (TI edge, X + AX, Y + AY) - 0 c* 

I’ (n edge, X, Y) + Y; (r~ edge, X, Y) AX + Y >: Cn edge, X, Y) AY = 

'4' + ul;AX + Y; AY 

64 G 8’ (n edge, X + AX, Y + AX) - 0 = 

0' (n edge, X, Y) + 0; (n edge, X, Y) AX + 0; (n edge, X, y) AY = 

In these equations, the subscripts x and y denote partial differentiation 
wit’h respect to X and Y. 

The actual convergence criterion is based on the sum of the squares of 
the errors 61, E,~, h3 and 64. This sum of the square errors is minimized 

with respect t-0 AX and AY resulting in the following equations. Elinimizing 
with respect to AX. 
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as: ass as: asi 

-+-+nr+-- = a AX aAx aAx 

y: 

Yx 

Minimizing with respect to AY 

asi asi a&$ asi 
-“--+++++- = 
ally aAY ahY any 

0 2 1 AY+ [ YY + 0 0 f Y’Y’ + 0’0’ 
Y YX XY XY XY 

1 AX + 

yy cy - 1) + By (0 - 1) -I- YY; + 0'0; 1 =o 
The results are two equations that can be solved simultaneously for AX and AY. 

The Minimization equation contains Y, 0, Y1 and 0' which can be evaluated 
at n edge by integrating Equation 1, Equation 2 and Equation 3. It also 
contains Yx, Y 

Y' 
Ox, 0 , Y;, Yt 

Y Y> 
@i and 0; which must be evaluated by 

integrating another set of equations. The necessary equations are formulated 
by differentiating Equations 1 through 3 with respect to X and Y. Differen- 
tiating with respect to X results in the following 

A+?-$ LC 2BGxY' BY; 
- -]- [,2 - cbx][fg] + 03 I 02 

I[ 2coxo ’ 

El3 

The boundary conditions for Equations 4, S and 6 are the following: 

yx 
= ox = $x = 0; = 0 and Y; = 1 at 11 = 0 
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Differentiating with respect to Y results in the following: 

The boundary condition for Equations 7, 8 and 9 are the fol owing : 

(73 

Y = 0 
Y Y = +Y = 5 

=0 and @I=1 at 
Y 

q=o 

Equations 1 through 9 make up 3 set of coupled 0. D. E.‘s which can be 
integrated from rl = 0 to n = n edge. 

The actual integration is carried out using a Kutta-Merson method. The 
algorithm automatically adjusts step size in rl to maintain the absolute 
truncation error below a specified amount. The algorithm also adjusts the 
step so that. the results of the integrati.on can be pri.nted out at a number of 
specified locations e The basic computational method is shown in Figure 4. 

6. RESULTS. Nachtsheim and Swigert 6 have shown that the range of 
initial X and Y for which the problem will converge decreases with increasing 
values of Q edge. They have also shown that the accuracy of the solution 
increases with increasing values of ri edge. Therefore it is advisable to 

-start the calculation with small values of n edge and a relatively large 
acceptable error, then uses the results to move to larger values of r~ edge 
and smaller acceptable errors. 

A set of four runs were made using different values of TJ edge. In each 
run, the step size in rl was Arl = 0.3, the truncation error limit was 1 .O x 10-l’ 
and a limit on the sum of the squares of the estimated errors 61, h2, 63 and 

64 was 1.0 x 10d6. 

The first run was a five step integration with n edge = 1.5. The problem 
converged rapidly, but failed to match the outer flow to within the error 
limit. The run was terminated after fifteen iterations. The results of the 
firs,t six iterations of the five step integration are shown in Figures 5 and 6. 
The second run was a ten step integration with II edge = 3.0. The problem 
converged to an acceptable solution in six iterations. The results of the sixth 
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iteration are shown in Figures 7 and 8. The third run was a fifteen step 
integration with ‘n edge = 4 .S. The fjfteen step integration also converged 
to an acceptable Solution in six iterations. The solution from the fifteen 
step intcgrntion was more accurate than the ten step. The results of the six 
iterations in the fifteen step run arc shown in Figures 9 and 10. A one 
hundred step run was made for comparison with the other runs. The one hundred 
step run was also found to converge in six iterations. The results of the 
sixth iteration of all four runs are shown in Figures 11 and 12. 

7. CONCLUSION. The results of the four computer runs indicate that it -- 
is possible to find an asymptotic solution to the unsteady, compressible 
boundary layer equations at the shock/surface interface using the coordinate 
transforms developed in this study. Further they indicate that a reasonably 
accurate solution can be achieved using as few as ten integration steps. 

The radial velocity (Y) profile shown in Figure 11 has the same form as 
the radial velocity (El) given in References 2 and 3, The temperature (0) 
profile shown in Figure 12 has the same form as the temperature (g) profiles 
in the same references. A direct one to one comparison with t.he profiles in 
the references is not appropriate because of differences in coordinate 
transforms , however, the similarity does indicate all three methods are 
yielding the same type of solution in physical space. All three indicate at 
near the interface, both the velocity and temperature approach their outer 
flow values asymptotically with no overshoot within the boundary layer. 

The asymptotic solution developed in this study is now available for use 
as a boundary condition in a finite difference solution for the entire 
boundary layer fldw within a hemispherical blast wave. The finite difference 
scheme will be based on the three transformed, basic governing equations 
already presented. Because the scheme will not contain a similarity assumption 
it should be possible to extend the solution in the lower pressure region. 
The complete solution in the region should provide more accurate estimates of 
near surface gas velocities, dust pick-up and dust transport, which will in 
turn allow more accurate estimates of the loading on ground targets during 
nuclear attacks. 
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A SIMPLE MODEL FOR PREDICTING THE BLAST LOADS ON BOX-LIKE STRUCTURES 

Klaus 0. Opalka 
Ballistic Research Laboratory 

U.S. Army Armament Research and Development Command 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. BLOP is a computer code for predicting the air-blast loads on 
targets which can be described approximately by a series of rectangular paral- 
lelepipeds. The code has been developed at BRL to quickly obtain a prediction 
of the average loads on the surfaces of a target encountering a blast wave, 
without having to resort to a hydrocode computation. The empirical model 
employed in the BLOP code is based on experimental and analytical work done 
predominantly at BRL. The results compare favorably with available data. 

1. INTRODUCTION. This paper describes a simple model for predicting* the 
blast loading on box-like structures, and discusses the results which are 
compared with available experimental data. 

The Blast-Load Prediction (BLOP) code was developed to quickly and inex- 
pensively estimate the blast loading on structures. The only prediction 
method available prior to the development of this code, is the standard 
prediction technique 1 which relies on the use of tables and of rules of thumb 
to estimate the average pressure load on a target surface. 

Another method available is the hydrocode. By the use of finite-differ- 
ence techniques it is possible to describe the flow field around a target in 
detail. But hydrocodes require considerable set-up time and are expensive to 
operate . Often a quick estimate of blast loads is needed in engineering and 
planning situations, e.g. for a proposed high-explosive (H.E.) field test 
where neither the time, nor the funds,.nor the manpower are available to 
carry out a complex hydrocode, or tedious hand computation. The BLOP code 
wasdeveloped in response to this need. 

The BLOP model employs analytical and empirical procedures, the latter 
of which are based on experimental work done previously at the BRL. A one- 
dimensional flow scheme is employed assuming head-on collision of the shock 
with the target. The Rankine-Hugoniot relations are used to define the flow 
conditions behind the shock. Three different flow situations are considered: 
(1) The shock-tube situation is characterized by a step shock. (2) The 
H.E. field test situation is characterized by an exponentially decaying blast 
wave. (3) The simulated blast-wave situation behind the exit of a shock tube 
is characterized by a generalized form of the modified Friedlander equation. 

The average over-pressure functions for the front and back faces of 
targets are empirical functions developed at BRL. The roof and side faces 
are treated according to the standard prediction technique. An attempt is 
made with the BLOP model to apply the simple case of the rectangular parallel- 
epiped to a complex structure as e.g. a truck, or a helicopter tailboom, sub- 
dividing it into a convenient number of sections each of which is represented 
by a rectangular box. Closed, partially open, and open-frame structures are 
considered. 
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The code was written in FORTRAN IV fox use on the UNIVAC 1108 at the 
Aberdeen Proving Ground, Edgewood, Maryland. The code contains detailed user 
instructions and numerous other comments. It will be published as an appendix 
to a BRL report, which describes the physical phenomena of blast waves and the 
target loading procedures used in the BLOP model in greater detail. Here, 
they axe reviewed briefly together with a discussion of the results. 

2. PHYSICAL PHENOMENA. This chapter offers a brief description of blast- 
wave phenomena in as much detail as is necessary to introduce and explain the 
terminology used in this paper. 

2.1 Blast Waves. When a high-energy weapon is detonated at some height 
above the ground, the pressure waves emanating from the center of explosion 
rapidly form a spherical blast wave, characterized by an abrupt increase of 
the air pressure across the shock front. Figure 1 illustrates the progress 
of the blast wave along the ground surface, As the incident blast wave 
expands, the shock strength at the front decreases. Where the shock front 
contacts the ground surface, it is reflected. 

The reflected shock front moves back into the air already compressed and 
heated by the incident shock, Behind the reflected shock, a new blast wave 
foxms with properties different from.those of the incident blast wave. Be- 
cause of these conditions, the reflected shock front moves faster than the 
incident shock front, g radually catches up with it, and combines with it into 
a reinforced shock front at some distance from ground zero (i.e. the reference 
point directly under the center of explosion). 

This new shock front is called the Mach stem of the blast wave. The 
Mach stem stands essentially normal, and moves parallel to the ground surface. 
This phenomenon considerably simplifies the treatment of blast loading of 
structures located in the region of Mach reflection. 

An explosion on the surface results in somewhat different air-blast 
phenomena. The blast wave forms a hemispherical, reflected shock front over 
the surface. There is no region of regular reflection in this case, and 
targets on the ground are subjected to air-blast conditions similar to those 
in the Mach-reflection region even close to ground zero. The shock front may 
be assumed to be vertical for most purposes. The wind behind the shock front 
and near the surface blows horizontally fox all practical purposes. 

A comprehensive description of blast waves and their effects on man and 
equipment can be found in Reference 1. Reference 2 contains a comprehensive 
collection of analytical and experimental studies on the subject of air-blast 
technology. 

2.2 Pressure History. Figure 2 gives a typical overpressure history as 
it may be recorded at some spatial location in the Mach-reflection region. 
The origin of the overpressure and time axes is set at the time of explosion, 
tO’ 

When the shock front of the blast wave arrives at time t a' perhaps a few 

seconds after the explosion, the pressure increases suddenly. The peak value, 
P so' is called the peak shock overpressure. The temperature and the density 

of the air suddenly increase, also. 
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Behind the shock front, the overpressure quickly drops to ahout one-half 
of its peak value, and falling steadily returns to zero at time t+. This 
time is called the positive-phase duration because of the positive over- 
pressure that prevails. The positive phase is followed by the negative phase 
during which the overpressure drops below atmospheric pressure. Subsequently 
it returns to ambient conditions. 

During the positive phase, strong winds follow the shock front giving 
rise to a positive dynamic pressure, q so - This dynamic pressure decays with 
the static overpressure but at a slower rate, and the wind continues to blow 
for a short while beyond the positive-phase duration. This means that the 
positive phase of the dynamic pressure lasts a little longer than the positive 
phase of the static pressure. 

During the negative phase, the wind of the dynamic pressure reverses its 
direction and blows toward the center of the explosion. Some damage may be 
expected during the negative phase of the blast wave but it is during the 
positive phase that most of the damage to structures occurs. Therefore, 
loading and response studies are restricted to the positive phase of the blast 
wave. 

3. COMPUTATIONAL MODEL. To keep the computational model simple, the 
follo%ng assumptions were made. 

(1) The free-field flow is essentially one-dimensional. This entails 
a shock front which can be considered planar and perpendicular to the 
direction of propagation. 

(2) The shock front will hit the model head on, i.e. the velocity vector 
will stand normal to the front face. The shock front and the front face of 
the structure are thus parallel planes. 

(3) Empirical equations will be used as pressure-decay functions and as 
average-load functions for the surfaces. 

(4) Target structures can be modelled by a series of rectangular paral- 
lelepipeds, This assumption is less restrictive than it may seem at first 
glance. 

The following load cases can be adequately described under these 
assumptions. 

(1) A step shock can simulate the test conditions in a shock tube. 

(2) An exponentially decaying wave can simulate the free field 
conditions in the Mach-reflection region. 

(3) A decaying wave as would be generated at the exit of a shock tube 
can simulate the special test conditions in the field behind the shock tube. 
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3.1 Shock Relations. The assumption of one-dimensional flow and the 
restriction to normal shock incidence allow the use of simple analytical 
equations like the Rankine-Elugoniot relations to define the conditions behind 
the shock front and behind the reflected shock. The shock-front velocity is 
defined by 

Us = ao(l + $$J-'<)" Cl3 

where a is the sound velocity in ambient air, and y is the ratio of specific 
heats. 'The shock strength is defined by 

p1 - po 
E=p , 

0 

where P o is the ambient, atmospheric pressure and PI the absolute pressure 
behind the shock-front. 

The wind velocity behind the shock-front is given by 

and the dynamic pressure is 

E2 
9 so = po 2y + (y-135 

(23 

(3) 

(4) 

For the definitions of other shock relations, the reader is referred to the 
literature.3 

3.2 Pressure-Decay Functions. The decay of the blast-wave overpressure 
at a fixed target location is modelled by the Friedlander equation 

P(T) = p,, (1 - T) eAC', (53 

where p,, = Pl - PO is the shock overpressure, c is a time coefficient, and 
r is the non-dimensional time, defined by 

t-t, 
OQ-cEtl &I. 

+ 
(63 

The time coefficient, c, is a function of the peak shock overpressure and 
time, and the model assumes a linear variation of c with 'c from an initial 
maximum value to a final minimum value. These values are empirical and form 
part of the required input. 
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The dynamic pressure decays in a similar fashion as the static pressure 
and analogous to the Friedlander equation 

-2ct 
q(T) = q,, Cl. - -rq12e ‘, (7) 

where the non-dimensional time is defined by 

t - t 
O<T = t a Gl. 

9 
+9 

(83 

The peak shock overprcssure, pso, the time of shock arrival, ta, and the 
positive-phase durations, t+ for static, and t+ for dynamic pressure, are 

9 
tabulated functions of the range from ground zero and are part of the required 
inpu.t. 

3.3 Average Loading Functions. The loading model used in the BLOP code 
is based on the Standard Prediction Technique as described in Reference 1. 
However, empirical loading functions, developed at BRL by Ethridge,4 were used 
inst,ead of those functions used in the Standard Prediction Technique. 

The basic loading function for the front face chosen by Ethridge is 

PFR(r) = pstag CT3 [l +(p;:,ag,s - 1) e-A(Nr ""I, (93 

where pFR is the average overpressure on the front face at time T, p stag is 

the average stagnation overpressure on the front face at time T, p, is the 
normally reflected shock overpressure, and p stag,s is the stagnation over- 

pressure immediately behind the shock front. A(S), Nr, and B(E,-c) are 
empirical functions determined by fitting Equation (9) to experimental data. 

The basic loading function for the back face chosen by Ethridge is 

p&) = E (l - 6 p CT,,) , 

where -r b is non-dimensional time based on the arrival of the shock front at 

the back face: 

OGTb=r-&- G1, 
s + 

(11) 
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with R = length of target in flow direction 

Us = shock-front velocity, given by Equation (l), and 

t + = positive-phase duration. 

E(c) and G(S,rb) are empirical functions determined by fitting Equation (10) 
to experimental data. 

The average-pressure functions used for the sides and the top of the 
target are those given by the Standard Prediction Technique. They are consid- 
ered to give an adequate engineering estimate. Since one cannot predict the 
direction from which a blast wave may approach the target, all surfaces must 
be examined and designed for a head-on collision with the shock front. 

3.4 Modelling of Targets. Existing methods for calculating the airblast 
loading on targets cover only a few, idealized, simple shapes. These are (A) 
rectangular parallelepipeds, and (B) cylinders. The first group can be 
further divided into 

(1) Closed Structures: Structures with a flat roof and bearing walls 
having either no, or only small openings (amounting to less than 5% of the 
surface area) fall into this category, e.g. shelters. 

(2) Partially Open Structures: Structures which have large openings, 
or window areas in excess of 5% of the wall area are classified as partially 
open structures, e.g. houses. Because the blast wave can enter these 
structures, the net loading of any wall of the structure is the difference 
between the interior and the exterior load. 

(3) Open Frame Structures are those which have a supporting steel, or 
concrete frame and nonbearing walls, as e.g. modern office buildings or truss 
structures. The more significant contribution to the loading of these 
structures is made by the wind behind the shock front which creates a consid- 
erable drag loading. 

An attempt is made with the BLOP code to apply the simple load case of 
a rectangular parallelepiped to targets which may be approximately described 
as an assembly of several rectangular boxes. Figure 3 illustrates the 
application of this concept to a helicopter tailboom. The target is sub- 
divided into a convenient number of boxes rigidly attached to each other such 
that they together resemble the shape of the target. The purpose of this sub- 
division is to accommodate variations of the incident shock overpressure, time 
of shock arrival, and positive-phase duration along the major target axis. 

4. DISCUSSION OF RESULTS. To evaluate the BLOP code, let us compare 
some blast-loading predictions with available experimental data and a hydro- 
code computation. 

4.1 Shock-Tube Test. The empirical equations used in the BLOP code to 
determine the average pressure on the front and back faces of a target are 
based on data obtained from an experimental investigation of diffraction blast 
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loading on two- and three-dimensional blocks." The data shown in Figure 4 
are representative of Taylor's test results and bracket the pressure range 
for which the empirical equations were derived. 

Figure 4a shows the comparison of the BLOP computation with the 34.5 kPa 
(5 psi) test results. The agreement is good, even though the computation 
cannot simulate the drop below the stagnation pressure on the front face which 
the experimental data show. A slight difference between experiment and com- 
putation stems from the fact that the shock overpressure in the test did 
not equal the nominal value. Figure 4b shows the same comparison at the 
138 kPa (20 psi) level. Here, the experimental data follow the prediction 
very closely on both the front and back faces. 

4.2 Helicopter Tailboom Test. Open-ended shock tubes are blast-wave 
generators. It was found that the BRL shock tubes may be used to generate 
blast waves with peak shock overpressures from 2-20 kPa (0.3-3 psi) in the 
field behind the shock tube exit. Targets too big to fit into the shock tube 
can be mounted some distance beyond the exit, and off-axis to avoid the gas 
jet. This technique was successfully used at BRL to investigate the dynamic 
response to blast loading of a helicopter tailboom using the 2.4 m (8 ft) 
shock tube as a blast-wave generator. Figure 5 illustrates the test set-up. 

The blast-field parameters needed for input in the BLOP code were deter- 
mined from a survey of the blast field behind the shock-tube exit. The com- 
puted blast-wave history is compared with the experimentally measured over- 
pressure history for a 13.4 kPa (1.9 psi) shock in Figure 6. The shock-tube 
generated blast wave does not have the typical, classical shape of a high- 
explosive blast wave shown in Figure 2. After an initial exponential decay, 
the overpressure reaches a plateau, the height of which appears to depend on 
the distance from the shock-tube exit. In the final phase of the blast wave 
the overpressure decays rapidly. This decay, limiting the positive-phase 
duration of the simulated blast wave, apparently is caused by the action of 
rarefaction waves at the shock-tube exit which quickly equalize the over- 
pressure in the exiting gas j et. 

In the experiment, overpressures were measured along the symmetry line 
on the front and back surfaces of the helicopter tailboom. These data are 
compared with the predicted average overpressure on the front face (Figure 7a) 
and on the back face (Figure 7b) of the tailboom resulting from the 13.4 kPa 
blast wave described in Figure 6. The predicted average front-face load 
(Figure 7a) is too high, particularly during the diffraction loading. This 
overestimation is most likely due to the modelling of the tailboom into box- 
like sections with plane surfaces and sharp corners while the real tailboom 
has curved surfaces with rounded corners that accellerate the pressure relief 
from the sides. 

The experimentally measured pressure rise on the back face (Figure 7b) 
is slightly steeper, and the peak value of the overpressure higher than the 
predicted load curve indicates. These differences are consistent with those 
observed on the front face and are also due to the modelling of the tailboom. 
Two other physical phenomena, vortex formation on, and dynamic response of 
the tailboom may be influencing the experimental curves. But on the whole, 
the predicted curve matches the experimental data well. 
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4.3 Equipment Shelter on MISER'S BLUFF, The S-280 Equipment Shelter 
was subjected to airblast during the MISER'S BLUFF test series.7 In Figure 8 
the free-field, blast-wave history recorded during the test is compared with 
the computed prediction. The comparison shows (a) that the Friedlander 
equation very adequately describes the pressure decay in a blast wave, and 
(b) that the experimental blast wave deviates in some way from the ideal blast 
wave. 

The front- and back-face load histories of the S-280 equipment shelter 
recorded during MISER'S BLUFF are compared with the BLOP-code computation in 
Figures 9a and 9b, respectively. The prediction agrees well with the 
experiment during the diffraction phase, which lasts about 15 milliseconds. 
The discrepancy between prediction and experiment during the drag phase can be 
explained by the dynamic response of the shelter wall during the test. The 
BLOP model assumes a rigid wall. There, too, exists the possibility that air 
leaked into the shelter under load, increasing the inside pressure which the 
differential pressure gages mounted in the shelter walls used as a reference, 
thus decreasing the pressure difference to the outside. 

4.4 HULL Code Prediction. A 3-D HULL computation was performed for an 
S-280 shelter modeln exposed to a 34.5 kPa (5 psi) step shock in a shock tube, 
and the results are compared with the BLOP-code computation. The front- and 
back-face load histories are shown in Figure lOa, and the side-face load 
history is shown in Figure lob. 

The BLOP prediction appears to "average" the HULL data points quite well 
during the diffraction phase (Figure lOa), and the agreement between the 
results of the two codes is generally good. The "ringing" of the HULL data 
on the front face is typical for the hydrocode computation when artificial 
viscosity is not used. A computation with artificial viscosity was not 
available as of this writing. 

On the side face (Figure lob), the HULL code results come closer to 
reality because the pressure drop due to the vortex generated at the front 
edge is accounted for in the loading history. Recent, as yet unpublished 
experiments at BRL have validated this hydrocode computation. 

5. CONCLUSION. From the foregoing discussion the following conclusions 
can be drawn. 

(1) Within the limitations imposed by the model, i.e. 

- a simplistic, 1-D flow scheme, 

- normal shock incidence only, 

- empirical, average-load functions, 

- crude modelling of structures 

it is possible to obtain a satisfactory estimate of the blast loading on a 
variety of structures and load situations without resorting to complicated 
numerical methods. 
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(2) The BLOP code provides such estimates over a reasonable shock-over- 
pressure range (l-400 kPa) with short set-up time at minimal expense. The cost 
involved in running BLOP on a digital computer (e.g. UNIVAC 1108) is less than 
1% of the cost of a hydrocode run, and therefore very suitable for parametric 
studies. 

(3) The computational model is expandable to improve existing loading 
functions and include loading functions for other generic (e.g. axisymmetric) 
shapes and for oblique shock impact and reflection. 

REFERENCES 

1. The Effects of Nuclear Weapons, S. Glasstone, Editor, D. A. Pamphlet No. 
.39-3, Headquarters, Department of the Army, Washington, DC, April 1962. 

2. 'Engineering Design Handbook Explosions in Air, Part One, W. E. Baker, 
IEditor, AMC Pamphlet No, 706-181, Headquarters, U.S. Army Materiel 
Command, Alexandria, VA, July 1974. 

3. Fundamentals of Gasdynamics, II. W. Emmons, Editor, Princeton University 
Press, 1958. 

4. Ethridge, N. H., "Blast Diffraction Loading on the F-ront and Rear Surfaces 
of a Rectangular Parallelepiped", BRL-MR-2784, U.S. Armament Research and 
Development Command, Ballistic Research Laboratory, Aberdeen Proving 
Ground, Maryland 21005, September 1977. 

5 h * Taylor, W. .J., ItA Method of Predicting Blast Loads During the Diffraction 
Phase,;' in: The Shock and Vibration Bulletin. The Shock and Vibration 
Information Center, Naval Research Laboratory, Washington, DC, January 
1972. 

Bertrand, B. P., Quigley, E. F., "Structural Response of a Helicopter 
Tailboom to Combined Thermal and Blast Loading", U.S. Army Ballistic 
Research Laboratory, Aberdeen Proving Ground, Maryland, in Proceedings II, 
Fifth International Symposium of Military Applications of Blast Simulation 
(MABS-53, Royal Swedish Fortifications Administration, S-104 50 Stockholm, 
Sweden, May 23-26, 1977. 

Schuman, W. J., 11C3 Shelters and Tat Antennas", U.S. Army Ballistic 
Research Laboratory, in "Proceedings of the MISER'S BLUFF Phase II 
Results Symposium", 27-29 March 1979, Vol. II, POR 7013-2, Field 
Command, Defense Nuclear Agency, Kirtland AFB, New Mexico 87115, 26 
September 1979, 

8. Lottero, R. E., "Comparison of 3-D Hydrocode Computations for Shock 
Diffraction Loading on an S-280 Electrical Equipment Shelter", U.S. Army 
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005, 
in: Proceedings of the 1980 Army Numerical Analysis and Computers 
Conference, NASA-AMES Research Center, Moffett Field, CA, 20-21 February 
1980. 

151 



IN
C

ID
EN

T 
W

AV
E 

\ 

R
EG

IO
N

 
O

F 
R

EG
U

LA
R

 
R

EF
LE

C
TI

O
N

 
4 

1 
*R

EG
IO

N
 

O
F 

M
AC

H
 

R
EF

LE
C

TI
O

N
 

Fi
gu

re
 

1.
 

Pr
og

re
ss

 
of

 
In

cid
en

t 
an

d 
Re

fle
ct

ed
 

sh
oc

k 
W

av
es

 
Al

on
g 

th
e 

G
ro

un
d 

Su
rfa

ce
. 



C 
+ 

3 

/ 

lu 

I 

i 
i 

153 



I fl 

j 

I I-------I 

i i n 
I -- cu 

! ------I 

I 

I 

-E 

J--- 

-#: 

! co 

! _** --- 

I tl 

154 



--FRONT- FACE PRESSURE 
---- = BACK-FACE PRESSURE 

; 
=DATA POINTS FOR FRONT FACE 
: DATA POINTS FOR BACK FACE 

P¶tOg = 198.85 kPa 

3-D CASE 

0 p-- &O$ 

)- ,0-o I 1 I I I 
0 0.25 0.50 0.75 1.00 1.25 1.50 

TIME (ms) 

b) Peak Shock Overpressure, ps = 138 kPa (20 psi) 

I- 

- = FRONT- FACE PRESSURE 
- - -- - BACK- FACE PRESSURE 

-DATA POINTS FOR FRONT FACE 
: = DATA POINTS FOR BACK FACE 

p,tag r 38. 51 kPa 

3-D CASE 

0 
Q,oo& 

/&’ 
-;-o_ -+ -Q---o--o---B 

20 - p 
,w 

,oI ’ 

,d’ 
0 

/ 

b.25 
I I I I J ” 

0 0.50 0.75 1.00 1.25 1.50 
TIME (ms) 

a3 Peak Shock Overpressure, ps = 34.5 kPa (5 psi) 

Figure 4. Comparison of RLOP-Code Prediction with Shock-Tube Data. 
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Front Tracking for Hyperbol It Conservation Laws: A Progress Report 

James Gl imm 
The Rockefeller University 
New York 10021 NY 

01 iver McBryan 
Courant lnsti tute 

New York University 
New York 10012 NY 

ABSTRACT, Front tracking allows greatly increased resolution and 
accuracy for fluid flow problems dominated by discontinuities. Progress 
is reported here on the upgrading of previous calculations [2,3]. The 
long range goal is a conveniently useable package which is coherently 
structured and applicable to a broad range of problems. 

1. INTRODUCTION. In our previous report [2,33, calculations using 
front tracking methods were reported. The calculations were performed 
in the context of petroleum reservoi rs) for which the relevent equations 
are a coupled system of el 1 iptic and hyperbolic equations: 

(1) v = -k(s)Vp 

(2) V-v = source terms 

(3) st + c*Vf(s) = source terms . 

Here p = p(x,y,t) is the pressure and s = s(x,y,t) is the saturation. 
The calculations tested the concepts of front tracking in a region of 
parameters for which the problem is unstable and very difficult to 
camp ut e . The calculations were checked internally for numerical 
consistency (for example, by testing for grid orientation effects and 
for convergence under mesh refinement). They were also checked against 
experimental data. The calculations were performed on a coarse grid, 
and appear to represent a new capability within computational fluid 
dynamics, which may be helpful for a broad range of problems. 

Recently, progress has centered on upgrading the capability of 
the calculations in several respects. 

2. NEW PHYSICS. Previous one dimensional calculations in gas 
dynam= [1] are the starting point for a two dimensional gas dynamics 
front tracking calculation. The main constructive step is the solution 
of the Riemann problem. This has now been installed in the two 
dimensional code and is undergoing preliminary tests. Special code 
(e.g. for reflection of waves at boundaries) has yet to be added. 
One problem on which this method will be tested is the transient flow 
past an object (wing foil), or through a tube of variable cross section. 

3. NEW GEOMETRY. Arbitrary fronts in two dimensions, including 
disconnected components and self intersections are allowed within the 
framework of the calculation’s data structure. This is important because 
self intersections may occur dynamically within a problem which originally 
may have had a very simple front. Also bifurcations can lead to changes 
of topology at the self intersection points. Examples are droplet 
formation and math stem reflections, Thus it is important to have a 
c:omputational data structure which allows these events to occur with a 
minimum of special coding. 
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4. ELLIPTIC PROBLEMS IN DISCONTINUOUS MATERIALS. Elliptic 
problems with discontinuous coefficients occur in a wide range 
of physical problems - for example in incompressible fluid flows. 
If the location of the discontinuity curve is known accurately, 
then it is possible to attempt a more accurate solution than 
would normally be possible. An elliptic solver has been de- 
veloped recently for media with an irregular material interface, 
and uses a mesh alignment algorithm to fit the known discontinuity 
curve, 0,McBryan [51. The main idea is to construct a grid by 
triangulation of the domain in such a way that each triangle lies 
entirely on one side of the interface. The grid is a deformation 
of a regular rectangular grid and is in fact rectangular away 
from the interface. The equations are then solved using finite 
elemnts on this triangulation. The resulting linear equations 
can be solved efficiently because the matrix is very similar to 
a regular finite difference operator. 

5. INTERFACE PACKAGE. Complex material topologies and 
interfaces occur in a wade range of problems. Work has begun on 
developing a subroutine package for manipulating such interfaces. 
The package allows for arbitrarily complex topologies and 
geometries and is designed to minimize the programming effort 
involved in coding interfaces. High level primitive operations 
such as adding curves to an interface or making a copy of an 
interface hide the underlying data structures which have been 
designed to provide efficient access to topological information - 
such as which component of a domain a given point lies in. This 
code will be used in both the shock-tracking codes and the 
elliptic codes referred to previously. Eventually the package 
will be extended to handle three-dimensional interface surfaces. 

6. STRUCTURED DESIGN. The front tracking and mesh 
alignment codes described previously are large and complex pieces 
of software. A major effort is underway to ensure that these 
codes can be applied to new problems with a minimum of pro- 
gramming effort. Principles of structured programming are used 
throughout and all physics or geometry dependant routines have 
been isolated. Thus the tracking code can be used as a package 
and easily applied to other problems. All that is required is a 
main driver routine and the provision of a set of physics 
dependant routines - 
conservation law. 

for example a Riemann solver for a hyperbolic 
Similarly the elliptic code is modularized 

and requires only a few problem-specific routines such as those 
to define the coefficient functions and boundary data. Lower- 
level modules such as a general purpose storage allocator and a 
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debugging package are also of more general use.. Supporting 
graphics programs have been designed with a device and 
system independance. Thus the same program can generate a 
Tektronix plot on a Vax,ll/780 or a movie on a CDC6600. 
Further developments, such as three-dimensional and colour 
graphics, will be needed for the effective interpretation of 
more complex codes. 
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DISCUSSION OF A VERTICALLY AVI:RACED IIYI~RODYNAMIC 
MODEL USING BOUNPARY FITTED COORDINATES 
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ABSTRACT. A numerical model for computing the vertically averaged 
hydrodynamics of a water body,including salinity effects, has been developed. 
The model employs the concept of boundary fitted coordinates to allow for 
an accurate representation of the boundary of the region being modeled 
while retaining the simplicity of the finite difference method of solution. 
Although a general curvilinear coordinate system covers the physical 
domain, all computations to solve the governing fluid dynamic equations, 
as well as the computation of the boundary fitted coordinate system, are 
performed in a transformed rectangular plane with square grid spacing. c, 

A combination implicit-explicit finite difference scheme has been 
employed to numerically solve the governing equations. With such a scheme, 
the water surface elevation is computed implicitly using the Accelerated 
Gauss-Seidel solution technique; whereas, the velocity and salinity fields 
are solved in an explicit manner. The major advantage of such a scheme 
is that the speed of a surface gravity wave is removed from the stability 
criteria while many desirable features of an explicit scheme are retained. 

Although additional work remains to be completed before the model 
can be considered fully operational , preliminary results demonstrate that 
the basic model behaves properly, 

1. INTRODUCTION. Since the equations governing the motion of fluids 
are nonlinear, analytic solutions in general cannot be found and one is 
forced to resort to numerical techniques to obtain solutions. The two 
most common such techniques are the finite difference method (FDM) and 
the finite element method (FEM). There are, of course, both advantages 
and disadvantages to each of these approaches, 

Perhaps the most often quoted advantage of the finite element method 
is that with this approach physical boundaries coincide with computational 
net points, Therefore, the modeling of flow within an irregular domain 
can be more accurately handled than with the normal finite difference 
method where the approach is to construct a rectangular grid over the 
domain, which forces the boundaries to be represented in a "stair stepped" 
fashion. However, a disadvantage of finite element methods is that they 
involve dense matrices rather than the sparse matrices involved in finite 
difference methods. This results in more computational time being required 
in a finite element model having the same number of mesh points as a finite 
difference model. An additional disadvantage is that the finite element 
method is more cumbersome to code into a computer model than the finite 
difference method. This can bc a problem not only during the development of 
the model but can also increase the level of effort required during later 
model modifications. 
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Accepting that the finite difference method possesses an advantage 
in simplicity and perhaps computational costs, a logical question is whether 
or not one can develop ways to circumvent the major disadvantage of having 
to represent irregular boundaries in a “stair stepped” fashion. One such 
technique which has been developed by Thompson, et a1.1*2*3 involves the 
use of boundary-fitted coordinates, Thompson’s method generates curvi- 
linear coordinates as the solution of two elliptic partial differential 
equations with Dirichlet boundary conditions, one coordinate being specified 
to be constant on the boundaries, and a distribution of the other specified 
along the boundaries, However, the numerical computations to solve the 
governing flow equations, as well as computations for the solution of the 
coordinate system, are not made in the physical curvilinear coordinate 
system but rather are made on a rectangular grid with square mesh spacing. 

The mathematical modeling of the hydrodynamics of a body of water 
plus the transport and dispersion of a conservative constituent within 
that body involves the solution of a set of partial differential equations 
expressing the conservation of mass, momentum, and energy of the flow 
field along with a transport equation for the constituent. These equations 
involve derivatives with respect to time as well as three spatial dimensions, 
However, a simplification that is often made in treating relatively shallow 
bodies of water that are well mixed over the depth is to vertically average 
the three-dimensional (3D) equations to yield a two-dimensional (2D) set 
for nearly horizontal flows. 

Since the early to mid 1960’s, many finite difference, plus a few 
finite element, computational models for vertically averaged flows have 
been developed, 4~5,6,7 The purpose of this paper is to describe the 
development of a new vertically averaged hydrodynamic model which is 
fully coupled with the water salinity through its influence on the 
water density. The finite difference method of soluti.on is employed 
but, unlike the previously developed models, solutions are obtained on 
a boundary-fitted coordinate system to provide an accurate representation 
of boundary geometry, 

2, BASIC HYDRODYNAMIC EQUATIONS, The Navier Stokes equations are 
the basic governing equations for the solution of fluid dynamic problems 
and express the conservation of mass and momentum of the flow field, In 
addition, for problems in which salinity effect are important, a separate 
conservation of mass equation must also be written for the salinity along 
with an equation of state relating the water density to the salt concentra- 
tion and the water temperature, With the closure of such a system, there 
exist six equations to be solved for the six unknowns; density c p, 
three velocity components - u, v, w, pressure - p, and salinity - s. 

After temporally as well as vertically averaging the equations 
discussed above, the final form of the governing equations in Cartesian 
coordinates is : 
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w a (uh) Continuity: at + 7 + a (vhl = 0 
aY 

x-momentum: a (hul + a (hu2) +w-w~ a4 hg aP 
at ax ay 

+ wax + 2 ax 

+ a(hoxX Et) + a (hDxy iF> + 5 payZw cos a 
ax aY pO 

\ 

- gu 

a Chv) y-momentum ; at + a (huv) + a(hv*) = h apa -- 
ax aY PO 

ax+ 

+ +yx 8 + a_(hDyy g> + > pav2w sin a 
ax aY 0 

- P 
a 0-l Salinity: at + a (h-1 + a (hvs) = _ 

ax aY 

Equation of State: P = P(s,T) 

where 4 = water surface elevation, 
h = water depth 
u,v = velocity components 
Pa = atmospheric pressure 

P = water density 

(33 

(41 

ilxx D D D- 
XY' YX' YY 

= eddy viscosity coefficients 

V 
W 

L wind speed 
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~1 = wind direction 
f = Coriolis parameter 
g = acceleration of gravity 
s = salt concentration 
T= water temperature 
Ex' Ey = eddy diffusivity coefficients 

A discussion of the development of these equations can he found in 
reference 8, 

The above set of equations must now be transformed into a (E,n) 
boundary-fitted coordinate system such that (E?n) are the independent 
variables., The resulting set of equations will then be solved in a 
transformed rectangular plane.as previously discussed, In order to 
accomplish the transformation, the following expressions arc 
utilized. 

fy = + 
[ - (fx,) E + (fx& 1 (63 

It should be noted that these expressions are written in a fully conserva- 
tive form which should result in a more accurate solution in highly 
irregular coordinate systems, For brevity, the transformed set of equations 
axe not presented. For the more interested reader, they are presented 
in reference 8, Obviously, the transformed equations are more complicated 
than the Cartesian form presented as equations 1-S; however, the advantage 
of being able to make computations on a rectangular grid far outweighs 
any disadvantage resulting from the more complicated set of equations. 

3. NUMERICAL ASPECTS. In order to obtain a solution of the 
governing set of transformed equations, the method of finite differences 
is employed, There are many different types of finite difference schemes 
that have been employed in numerical solutions of partial differential 
equations, These schemes range from fully explicit to fully implicit, 
with a combination of an explicit-implicit scheme being employed in some 
cases, e,g,, Edinger and Buchak,g A similar scheme is employed here. 
Basically, the computational cycle will consist of the following steps.. 

a. Solve for the water surface from the continuity equation in 
a fully implicit fashion using the Accelerated Gauss-Seidel technique, 

b. Using the most recent values of the water surface elevations, 
solve-for the u and v velocity components from the x and y 
momentum equations in an explicit fashion. 
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C. Solve for the salinity from the salt transport equation in 
an explicit fashion. 

d. Compute the density from the equation of state, using the most 
recen??ly computed salinity field, 

e. - Step forward in time and repeat the sequence. 

Such a scheme as outlined above will have the stability criterion 
associated with the speed of a free surface gravity wave removed; 
although, diffusive criteria as well as the Torrence condition associated 
with the speed of a water particle remain, However, these criteria are 
not normally over restrictive. 

The grid upon which the governing equations are solved is rectangular 
with a grid spacing of At = AQ = 1. The u and v velocity components 
are computed at the corners of each cell with the water surface elevation, 
salinity, and density computed at the center of a cell. The (x,y) 
coordinates are specified at the corners, the center, and also at the 
midpoint of each side of a cell. 

The basic difference equations are developed using forward differences 
for all time derivatives. Centered differences are used in all spatial 
derivatives except in the convective terms where one has the option in 
the computer model [called VAkPd for Vertically Averaged Hydrodynamic 
Model) of requesting the use of eith& centered-or a form of Roache’s 
second upwind differencing, 

4, BOUNDARY CONDITIONS, Three types of boundaries are allowed in 
VAHM; walls, oceans, and rivers. Wall boundaries are characterized by 
the specification of a no-slip condition, i.e., the velocity components 
U and v are set to be zero at walls, Although, physically, the flow 
must be zero at a solid boundary, slip conditions on the velocity at a 
wall often give more realistic results if the grid spacing is too large 
near the wall, Slip conditions would be implemented by setting the norma 
component of the velocity equal to zero with the tangential component 
computed from the expression f6r zero vorticity. At the present time, 
only the no-slip condition is allowed in VAHM, 

Ocean boundaries are characterized by the specification of a time 
varying water surface elevation at the boundary, Velocities on the 
ocean boundary are then computed from a simplified form of the momentum 
equation where the diffusive terms have been neglected, melsided 
differences are used to replace derivatives that need points outside 
the field. 

When the flow is directed into the computational field, the boundary 
condition on the salinity is prescribed as that of the ocean, However) 
when the flow is moving out of the computational field, the salinity 
at: an ocean boundary is set to be equal to its value at the next point 
inside, 
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River boundaries axe characterized by the specification of the 
velocity. The salinity is set to be zero and the water surface elevation 
at the center of a river boundary cell is computed as in any interior 
cell. 

5. MODEL APPLICATION. In order to demonstrate the versatility of 
VAHM in its ability to model flows in rather general multiply-connected 
regions containing both river and ocean boundaries, an application has 
been made using the physical geometxy in Figure 1. 

The first step in the application of VAHM is the generation of 
the boundary-f it t ed coordinates. This is accomplished through a coordinate 
generation code developed by Thompson. Output from the coordinate code 
is saved on a file for subsequent use by VAHM. The basic input to the 
coordinate code is the specification of the (x,y) coordinates of the 
boundary points noted on Figure 1. Although various degrees of coordinate 
control can be exercised, the boundary-fitted coordinates shown in 
Figure 1 were computed using no control, The coordinate system plotted 
was the the third attempt at generating a useful grid system. Thxough L 
the movement of boundary points and/ox coordinate control one attempts 
to compute boundary-fitted coordinates such that the grid spacing does 
not vary rapidly and such that (t,n) lines never approach being parallel 
to each other, The coordinate system pxesented satisfies both of these 
criteria and thus is considered to be adequate. 

Fox the geometry shown in Figure 1, an application, in which a 
river boundary is assumed at the top with an ocean on the bottom, 
has been made, A constant velocity of 0.4 m/s and a zero salinity 
concentration were assumed at the river boundary while the tide cuxve 
presented in Figure 2, and an ocean salinity concentration of 30 ppt 
was prescribed at the ocean boundary. The initial depth was set to be 
11.0 m throughout the system with the initial velocity and salinity 
fields set to zero. Values of various parameters were prescribed by 
setting the diagonal components of the eddy viscosity tensor to 
10 m*/s , setting the Chezy coefficient for bottom friction to 35 m l/2 /s 
and employing a computational time step of 600 see, 

Figures 3-9 present “snap shots” of the computed flow field at 
various times. The influence of first the flood and then the ebb portion 
of the tide can be clearly seen. Tn addit ion to velocity vector plots, 
one can also consider the time history of the water surface elevation as 
well as the salini.ty at particular points in the systems, Figures 10 
and 11 axe examples. 

6. SUMMARY. A numerical model for computing vertically averaged 
velocities and salinity plus water surface elevations has been developed. 
By employing the concept of boundary-fitted coordinates, irregular 
boundaries can be accurately modeled in either simply or multiply- 
connected regions, Even though the numerical grid is a nonorthogonal 
curvilinear grid in the physical region being modeled, all numerical 
computations axecarriedout in a transformed rectangular grid with 
square grid spacing. 
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A feature of the model is the particular solution technique employed 
to numerically solve the governing equations. A combination implicit- 
explicit’ finite diffcrcnce scheme, patterned after work by Edinger and 
Buchak 9 in their development of a laterally averaged reservoir hydro- 
dynamic model, has been developed to remove the speed of a gravity wave 
from stability restrictions on the computation time step while still 
retaining some of the advantages of explicit schemes. With such a scheme, 
the water surface elevation is computed implicitly using the Accelerated 
Gauss-Seidel solution technique while the velocities and salinity are 
computed in an explicit fashion. 

The model has been developed for general applications. Any number 
of river and/or ocean boudaries can be arbitrarily located on the trans- 
formed rectangular plane, as can the placement of islands in the interior 
of the computation field, Even though a great deal of generality exist, 
there are restrictions. For example, only no-slip boundary conditions 
arc currently treated at solid boundaries and no fl.ooding of those 
boundaries is allowed; however, work on removing these restrictions 
is ongoing e 

Although VAHN has been developed to the point where results from 
the test application presented are encouraging, additional work is needed 
before VAHM can be considered fully operational. 
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Figure 1. Boundary fitted coordinate system for a multiple 
connected region 
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Figure 2% Water surface elevation at ocean boundary 
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Figure 3 . Velocity field after 1 hour with an ocean and a river boundary 
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Figure 4. Velocity field after 3 hours with an ocean and a river boundary 
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Figure 5, Velocity field after 5 hours with an ocean and a river boundary 
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Figure 6 . Velocity field after 7 hours with an ocean and a river boundary 
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Figure 7, Velocity field after 9 hours 
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Figure 8. Velocity field after 12 hours with an ocean and a 
river boundary 

184 



SCALE 
1.e (IPS 1 

l.@ 
- EXCEEDS PLOT LIHIT 

Figure 9. Velocity field after 16 hours with an ocean and a 
river boundary 

185 



0 2 4 6 8 10 12 814 

TIME. IIR 

Figure 10: Water surface elevation at 6 =ll, rl =11 
with ocean and river boundaries 
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Figure 11. Salinity at 4 = 11, r~ - 11 
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THE GEM CODE: DIRECT SOLUTIONS OF ELLIPTIC 
AND MIXED PROBLEMS WITH NON-SEPARABLE 

5- AND g-POINT OPERATORS1 

Patrick J. Roache 
Ecodynamics Research Associates, Inc. 

P. 0. Box 8172 
Albuquerque, New Mexico 87198 

ABSTRACT. Timing and accuracy tests of the GEM (General Elliptic Marching) 
Code are described. The GEM Code solves elliptic and mixed discretized two- 
dimensional partial differential equations by direct (non-iterative) spatial 
marching methods. Both 5-point and g-point stencils may be solved, with no 
requirement that the coefficients be separable. Repeat solutions of 5-point 
operators are solved in a CPU time equivalent of 2 SOR iterations. The basic 
GEM depends on problem parameters (primarily a large cell aspect ratio AxlAy) 
to control the instability incurred in marching elliptic equations. A stabi- 
lized version uses the basic GEM in a multiple patching scheme to solve larger 
problems. 

1. INTRODUCTION. Elliptic equations with non-separable coefficients 
arise in a variety of applications. Even the simple Poisson equation becomes 
non-separable when written in general non-orthogonal coordinates. The simplest 
second-order finite difference discretization then leads to a g-point non- 
separable stencil. 

Such problems are not solvable by fast direct methods such as odd-even 
reduction, Hackney's method, etc. Direct solution by brute-force banded 
Gaussian elimination is very expensive and limited in problem size by round- 
off error and storage. 

Iterative methods are most often used for such problems, and multigrid 
methods in particular can be very effective. However, any iterative method 
depends on the effectiveness of the smoothing operator which depends on dia- 
gonal dominance. This deteriorates with the addition of first-derivative 
terms, either from the physical laws (e.g. convective terms) or from a non- 
orthogonal coordinate transformation. Some iterative methods (ADI) fail 
completely on even a simple problem like the Poisson equation in Cartesian 
coordinates with a large cell aspect ratio AX/AY. 

Marching methods are at present the only fast direct method of solving 
such problems. The GEM Code is a user-oriented package of subroutines which 
implement the marching methods for a fairly wide class of two-dimensional 
problems. This paper describes the results of timing and accuracy tests on 
the GEM (General Elliptic Marching) Code. 

- 

1 Research sponsored by the U.S. Army Research Office. 
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2. THE GEM CODE. The GEM Code solves elliptic and mixed discretized 
two-dimensional partial differential equations by direct (non-iterative) spa- 
tial marching methods. Both 5-point and g-point stencils may be solved, with 
no requirement that the coefficients be separable. For example, it solves 
the usual second-order accurate discretization of 

aFxx + bF 
YY + CFx + dFY + eF XY 

+fF= g (1) 

where a,b ,.,.g are all functions of x and y. The methods used in the GEM 
Code are described in detail in (1). The basic code is based on "simple 
marching" and depends on problem parameters to control the instability incur- 
red in marching elliptic equations; for realistic physical problems, this 
primarily depends on a large cell aspect ratio ~x/ny. 

Operation counts e are given in some detail.in (1). For a simple 
Poisson equation (5-point operator) without making use of symmetry, in a 
square array, this gives 

0. initiation = 4M3 f ; M2 , 8 
repeat 

= 14M2 (2) 

The initiation count is less than that required to establish a single solu- 
tion by point SOR, and the repeat count is less than 2 point SOR iterations. 
Since operation counts like these neglect many overhead and subscripting 
operations, it is necessary to validate them with actual timing tests, 
especially since Equation (2) indicates such remarkable efficiency. 

When a g-point operator is used, the marching solution proceeds a line 
at a time (like line SOR) and requires a tri-diagonal solution at j + 1 at 
each step in the march. 
not their order (i.e. 

This of course increases the operation counts, but 
repeat solutions are still optimal, with e a M2). 

For other aspects of the method, see (1). 

3. PROBLEM DESCRIPTION IN THE GEM CODE. The code is written with a 
"smart user" in mind, i.e. one who knows both finite differences and FORTRAN. 
The discretization of the continuum partial differential equation is left to 
the user. The code is written in Fortran IV, and the subroutine GEM solves 
the stencil 

(3) 

'7 '8 '9 J 

All the coefficients C1,C2...C1D are arrays stored in the labeled COMMON 

block GEMCOM. (The smart user could change some or all of these to BLANK 
COMMON for storage efficiency.) 
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The Subroutine Call is of the following form. 

CALL GEM(INIT,F,IL,JL,ILD,N59,IPER,ICOR, 
NRC,RCOND,JMAR,JBOT,JTOP,NDBC,FDBC, 

IPVT,CI ,KLD,NClO,EMX) 
(4) 

INIT = 0 initiates only, = 1 initiates and solves, >l backsolves only. The 
solution is stored in F. The problem size is ILxJL, with the actual first 
DIMENSION of the arrays being ILD. N59 = 5 or 9 gives the 5-point or 9- 
point operator solution. (If N59 = 5, the corner coefficients CI,C3,C7 and 
C9 are ignored.) For IPER = 1, periodic boundary conditions are used in the 
x-direction (normal to the marching direction y). ICOR is the number of 
corrective clean-up iterations used to reduce round-off error accumulation; 
usually, ICOR = 0 is used, but in some cases of marginal stability, ICOR = 1 
or 2 may be used. 

The LU decomposition and back-solve of the influence coefficient matrix 
is done through LINPACK subroutines (2) which are selected by the option indi- 
cator NRCOND. For NRCOND = 1, LINPACK routines are used which give an esti- 
mate of the inverse of the condition number RCOND. The time penalty is small, 
and in the author's experience, RCOND has been valuable as a debugging aid. 

JMAR is an option indicator for the march direction, with kl giving a 
march in the +J or -J direction, respectively. This is a significant option 
because the stability of the marching method is directional. For an expanding 
coordinate system (typical of turbulent boundary layer calculations, for 
example) the stability is improved if the march proceeds from the coarse mesh 
to the fine mesh. 

The next four arguments are primarily of use when GEM is driven by another 
code GEMPAT which stabilizes the solution by patching subregions together. 
Without stabilizing, JBOT = 1, JTOP = JL, NDBC = 0 and FDBC is ignored. In 
the stabilizing code, JBOT and JTOP define the extent of the subregion being 
solved, and NDBC = 1 indicates that the solution along the patching line has 
Dir,ichlet boundary conditions defined in the vector FDBC( IL). 

IPVT and CI are work arrays, dimensioned IPVT(ILD) and CI(KLD,KLD) where 
KLD > IL - 2. - 

NC10 is another option indicator primarily used when patching subroutines 
together. For NC10 = 0, the homogeneous problem ClO(I,J) = 0 is solved, re- 
gardless of the values stored in ClO. 

Finally, the variable EMX is the output value of the maximum error in the 
solution, which occurs at the end of the march. A significant advantage of 
the marching method is that it will not lie to the user. The finite differ- 
ence stencil is satisfied virtually to single precision everywhere except at 
the end of the march. The solution obtained can be viewed as a virtually exact 
solution of a problem with a boundary condition perturbed by EMX. 

Boundary conditions are also specified by the coefficients Cl - Clo, as 
ind-icated by the following stencils. 
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'5 '6 '4 '5 '6 c4 c5 

c8 '8 '8 

I I 
'5 '6 c4 c5 

c8 c8 
F = Cl0 (5) 

I I 

c2 c2 c2 

'5 '6 '4 '5 '6 '7 '8 

For example, this stencil indicates that in the lower left-hand corner, at 
i = 1 and j = 1, the boundary condition is 

C2(1,1)*F(1,2) + C5(t,l)*F(l,l) 

+ C6(1,1)*F(2,1) = ClO(l,l) (6) 

The general form of Equation (5) allows for all linear combinations of 
boundary conditions such as Dirichlet, Neuman, mixed, ratio of derivatives 
(afx + bfy = c), etc. However, the requirement for separability of boun- 
dary conditions in the marching y-direction dictates that C2 cannot be used 
at the side boundaries. In x, the periodic option indicator IPER = 1 over- 
rides the matrix specification in Equation (5). For the g-point operator, 
the periodic tridiagonal solution is obtained by the method of Reference (3). 

The code is written so that none of the arrays Cl - Cl0 are passed to 
other subroutines in argument lists, and the unused portions of the arrays 
(e.g. Cl at J = JL) are not used for temporary storage. The idea here is to 
allow the user the option of saving the storage space by regenerating some 
or all of the coefficients as external or statement FUNCTION's in FORTRAN. 
It is only required of the user that he define the coefficient and remove 
that name from COMMON GEMCOM. It should be noted that the significant stor- 
age problem of the ten arrays Cl - Cl0 is not an aspect of the marching method, 
but simply follows from the problem description. The only significant storage 
penalty of the method is CI, giving essentially a x2 penalty compared to 
iterative methods. 

4. TEST PROBLEMS AND RESULTS ON THE BASIC CODE. One set of test prob- 
lems used pseudo-random number generation for all coefficients, which was 
useful in debugging all the options. A second set used a simple Poisson 
equation modified by a cross-derivative term VC*fxy, formulated with centered 
second-order differences. 

The test problems were run on a CDC 6600. A sampling of the results is 
presented in Table 1. Note that the 81 x 81 mesh problem for the 5-point 
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operator initiates in + 1 ms/cell, the equivalent of 64 Point SOR iterations, 
and solves repeat solutions in the equivalent of 2 Point SOR iterations. 
For the simple Poisson equation with AxlAy = 10, the maximum residual error 
is 3.9 x 10-6. 

The g-point operator with non-periodic boundary condition requires 
about 67% more initiation time and about 31% more repeat time. With periodic 
boundary conditions, the g-point operator requires about 3.2 x as long for 
inil:iation and about 2.6 x as long for repeat solutions. 

5. THE STABILIZING CODE GEMPAT2. The method of stabilizing selected 
from several available alternatives (1) is the multiple patching method. The 
problem size in J (i.e., maximum JL for given cell aspect ratio, etc.) is 
doubled by breaking the solution into two subregions separated at J = JPATCH. 
With guessed Dirichlet boundary conditions at JPATCH, each subregion is solved 
directly using basic GEM. This solution gives non-zero residuals along JPATCH. 
The new Dirichlet conditions along JPATCH are then solved directly so as to 
zero these residuals. The technique is a capacity matrix or influence coeffi- 
cient matrix method which is not essentially connected to marching methods. 
The patching matrix is established in an initiation procedure which requires 
IL-2 homogeneous solutions with unit-perturbed Dirichlet conditions along 
JPATCH; hence, the homogeneous over-ride option NCID in GEM. 

This procedure for a 2-patch solution is incorporated into the subroutine 
GEMPAT2, which then calls GEM. Although several of the options in GEM are not 
of interest except for use with GEMPAT2, it was decided to have only one ver- 
sion of GEM available. The possible confusion arising from the unused options 
seems outweighed by the advantage of having only one version of GEM to docu- 
ment and maintain. Similarly, GEMPAT4, under development, is a code to imple- 
ment the patching procedure for a 4-patch solution, and it will call the only 
version of GEMPAT2. 

6. TIMING TESTS OF GEMPATZ. The patching method for a 2-patch solution 
requires two of the CI matrices (one for each subregion) and an additional 
storage penalty for the patching matrix , and so the storage penalty is 3xILxJL, 
compared to ILxJL for the single-region solution by the basic GEM. The theo- 
retical operation count given in (I) may be expected to deteriorate in accuracy, 
especially for initiation , as the number of patches increases. 

The GEMPAT code is still being refined, but the timing tests on the 
initial version are very encouraging. For the 5-point operator with non- 
periodic boundary conditions on a 71 x 71 grid, the GEMPAT code initializes 
in the equivalent of 265 SOR iterations, a factor of 3.1 over the single 
region solution. This is significantly better than the value of 4.3 pre- 
dicted by the operation count (1). Repeat solutions are obtained in 5.2 SOR 
iterations, a factor of 2.1 over the single region solution, in agreement 
with the operation count. 

For the 4-patch solution, operation counts indicate penalty factors of 
-10 for initiation and 4.3 for repeat solutions. For further patching, the 
grolwing initiation and storage penalties make the method unattractive, and 
we do not plan a code above CEMPAT4. 
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Unlike the single-region solution, in which the error is virtually con- 
fined to the boundary at the end of the march, the patched solutions also 
have errors (non-zero residuals) along the patching lines. However, the 
patching matrix is usually well-conditioned and this error is acceptable in 
the problems tested to date. A more complete investigation of the errors 
and timing tests of the codes GEMPAT and GEMPAT is forthcoming. 

Table 1. Timing tests of the GEM Code on a CDC 6600 with Level 2 
Optimization of the FORTRAN IV Code. "init" refers to initiation times, 
" rep " refers to repeat solution times, "SOR"' refers to times for a single 
iteration of a Point SOR method including a convergence test but without 
boundary calculations, e refers to predictions based on theoretical opera- 
tion counts. Total times are in seconds, times/cell are in milliseconds, 
based on the minimum of three consecutive runs which included one initiation 
and five repeats. 

problem grid 31 x 31 51 x 51 81 x 81 81 x 81 
(operator) (5 pt.) (5 pt.1 (5 pt.) (9 pt.) 

init time 0.42 1.74 6.61 15.75 

init time/cell 0.47 0.70 1.03 2.46 
init time/SOR 29.7 42.8 64.3 107.1 
rep time 0.035 0.089 0.206 0.384 
rep time/cell 0.039 0.036 0.032 0.060 
rep time/SOR 2.48 2.19 2.00 2.61 
init time/rep time 12.0 19.6 32.1 41.0 
% error, erep -32 -22 -21 -28 
% error, 0 init'erep -22 -19 -15 -5 

REFERENCES 

Periodic 

81 x 81 

(9 pt.) 

30.24 
4.73 
205.7 
0.750 
0.117 
5.10 
40.3 
-32 
-3 

(1) Roache, P. J,, "Marching Methods for Elliptic Problems: Part l", Num- 
erical Heat Transfer, Vol. 1, No. 1, 1978, ~~-1-25. "Part 2", Vol., 
No. 2, pp. 163-181. "Part 3", Vol. 1, No. 2, pp. 183-201. 

(2) Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W., "LINPACK 
User's Guide", SIAM, Philadelphia, 1979. 

(3) Roache, P. J. and Temperton, C., "Algorithms for the Solution of Cyclic 
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A NEW VARIATIONAL METHOD FOR INITIAL VALUE PROBLEMS, 
USING PIECEWISE HERMITE POLYNOMIAL SPLINE FUNCTIONS 

C. N. Shen* and Julian J. Wu 
U.S. Army Armament Research and Development Command 

Large Caliber Weapon Systems Laboratory 
Benet Weapons Laboratory 

Watervliet, NY 12189 

ABSTRACT. A variational principle for a functional can be found which 
sat-Lsfies both the original system and its adjoint system. The variations of 
this functional give no boundary terms if the bflinear concomitant of the 
systems vanishes. For a second order time varying initial value problem, one 
can adjust the boundary conditions of the adjoint system in terms of the 
boundary conditions of the original system so that the bilinear concomitant is 
identically zero. An expression for the variation of the functional is 
derived which contains only the terms involving the variations of the adjoint 
variable and its derivative, but no variation of its second derivative. The 
variations of the adjoint variable and its derivative are found to be zeroes 
at the final conditions , just as the variations of the original variable and 
its derivative are zero at the starting (initial) conditions. This implies 
that we are able to solve the problem in one direction without worrying about 
the conditions at the other end as the initial value problem should be, The 
algorithm is much more simplified than in the past. An example is given to 
show the procedures of this new variational method. 

I. INTRODUCTION. Variational principles apply mostly to boundary 
problems where eigenvglues are sought. It is seldom used for initial value 
problems alone where the far end conditions are neither known nor specified. 
If we use discrete methods to solve an initial value problem, such as finite 
difference method, only the initial conditions should be given. In the same 
way, if we employ variational method with spline functions, we should not 
be concerned with the far end conditions. This paper gives a procedure to 
Eind a recursive solution of an initial value problem by variational methods 
using the cubic hermite polynomial spline functions. 

Let us consider a dynamical system governed by the following equation: 

L(t)Ya(t) = -Q(t) 

with appropriate boundary conditions. tn the above equation L is a linear 
operator, ya is the dependent variable, Q is a Eorcing function, and t is the 
independent variable. 

%?Lso Professor at Rensselaer Polytechnic Institute, Troy, NY. 
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Some integral property in the form of a linear functional-of the variable 
[II, such as the inner product of an adjoint forcing function Q and the 
solution of Eq. (1) can be used for estimation. 

G[YaI = J 
tb - 

t0 

QYad t (2) 

The estimate y which differs from the solution ya of Eq. (1) by an increment 
6y can be written as 

&Y = Y - Ya 4 

Then the estimate y becomes 

G[YI = I 
tb - 

Qydt = I 
tb - 

I 
tb - 

W,dt + Qeydr 
t0 to t0 

= G[ya] + /Lb iSydt 
0 

which is in error to first order in 6y and Q. 

(3) 

(4) 

II. THE VARIATION PRINCIPLE. A more accurate estimate can be made by 
constructing a variational principle [l] for Eq. (2). By using the adjoint 
variable y as a Lagrange multiple and Eq. (1) as an addition to G[y] we have 

J[Y,;] 
tb - 

= G[YI + It Y (Q+Ly)dt 
0 

= Itb &dt + I 
tb - tb - 

YQdt + I YLydt (5) 
t0 t0 t0 

In order that J be a variational principle for G the following requirements 
must be satisfied. 

(a) J is stationary about the function ys which satisfy the relation in 
Eq. (1). 

LWy, = -Q(t) (6) 

(b) The stationary value of J deduced from Eqs. (2) through (5) is 

J[Y,YI = G[y”sI + G[yaI (7) 
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Consider first the stationarity of J by taking the variation 

bJ = &{!:I ;ydt -t 1 
tb - tb - 

YQdt: + / Wdr) 
t0 t0 

6J = I 
tb - 

&y(Ly+Q)dt -I- I 
tb - 

[Q&Y I- ;LGyldt 
CO t0 

We will make an effort later to impose certain conditions in order that 
the Following equality holds: 

I 
tb - 

ylbydt = / 
tb -I 

dyLydt 
t0 t0 

(9) 

where L(t) is an adjoint operator. 

By combining Eqs. (8) and (9) one obtains 

6J = / 
tb - 

~y(Ly+Q)dt: + / 
tb 

6y[:; + $dt = 0 (10) 
t0 t0 

Since the variations 6y and 6y are arbitrary it leads to the requirement that 
the stationary values y, and 7, must satisfy. 

LY, = -Q (11) 
-- 
Lys =z -(I (12) 

Since Eq. (11) is the same as Eq. (6), therefore J is stationary about the 
function Is. Equation (12) is the adjoint equation in terms of the adjoint 
operator L, the adjoint variable 7, and the adjoint forcing function g. 

Using the relation in Eq. (11) f or the stationary value of J from Eq. (5) 
we have 

J& ys~ = Jtb (bsdt + ICb ;s(PtLys)dt = aY,l (13) 
t0 t0 

Si,nce J is stationary and 6J + 0 then 

Gfy,l + ‘&I (14) 

which ts the requirement given in Eq. (7). 
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It is noted that Eq. (10) contaFns no boundary terms to be satisfied, 
This bears an important point in the future discussion of the initial value 
problems. 

III. BILINEAR CONCOMITANT. The assumed equality in Eq. (9) is discussed 
here by considering the following bilinear concomitant [I]: 

I 
tb - 

YLydt - 1 
tb e- 

D= YLydt (15) 
t0 t0 

The above expression can also be written in terms of boundary conditions 
at t = to and t = tb. It is assumed that these boundary conditions are 
assigned in such a way that the above bilinear concomitant is identically 
zero, i.e., 

D:O (16) 

Then the first variations of D also vanish. 

6D = sD(s;) + 6D(6y) = 0 (17) 

Since 6y and 6y are independent of each other, then 

(18) 

and 

sD(6;) = I 
tb - 

dyLydt - / 
tb tie 

yL6ydt = 0 
t0 t0 

&D(~Y) = 1 
tb - 

yL6ydt - I 
tb es 

GyLydt = 0 
t0 to 

(19) 

Equation (19) is identical to Eq. (9), which is the assumed equality 
previously. This implies that if Eq. (16) is true then Eq. (9) or (19) is 
automatically true. 

IV. INTEGRAL OF BILINEAR EXPRESSION. The integral of a function is 
given as 

I = Itb N&t 
TO 

(20) 

where $(yy) is an arbitrary bilinear expression [a] in the form 

NYU) - - -v - = UY'Y' + SY'Y + YYY + EYY 
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The prime (') in the above expression denotes (d/dt). 

Equation (20) can be integrated by parts. TWO different forms of 
integration and end conditions may be obtained as follows. 

1=-j 
tb - - tb 

yLydt -t ~Y’+YY)Y~ 
TO “0 

(22) 

tb -_ tb 
I = - I yLydt + (a;'+B;)yl (23) 

to t0 

where the differential expressions are 

Ly = (ay')' - By’ f (Yy)' - cy 

L; = (&' + (6;)' -I - - YY - EY 

(24) 

(25) 

The bilinear concomitant given in Eq. (15) can now be expressed in terms 
of the function values and their derivatives at the end points by equating 
Eqs. (22) and (23). 

D = [a(y';-L'y) - (r-O)y;l I 
tb 

(26) 
to 

V. END CONDITIONS FOR THE ADJOINT SYSTEM. In order to satisfy the 
expression D I 0 in Eqs. (15) and (16) the end terms in Eq. (26) must vanish. 
Thus it requires 

a - - 4 
Mb(Yb'Yb-Yb'Yb) - ao(yo'yo'yo'yo) - (Yb-Bb)ybYb + (YO'~o)Yoyo ' o (27) 

Equation (27) can be satisfied identically if the end conditions of the 
adjoint system are proportional to the end conditions of the original system 
as follows: 

Yb = &,-B&y, (28a) 

Yo = (Yb-Bb)kYb (28b) 

Yb' = -ab -loo(Yb-flb)kyo' 

Yb' = -a,-1 ab(Yo-Bo)kyb' 

(28~) 

(28d) 

where k is a constant. 

The above expressions give the required end conditions for the adjoint 
system in terms of that of the original system. Thus from Eqs. (15) and (16): 

D=J 
tb - 

YWt - 1 
tb -- 

yLydt E 0 
t0 t0 

(29) 
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To summarize, if one can make the end conditions of the adjoint system 
satisfy the relationship in Eq. (28), the bilinear concomitent D vanishes. 
The variation in Eq. (10) is then valid. 

It is also noted that the variation in Eq. (10) has no far end terms 
which simplify the computation. This is because the far end terms may cause 
certain difficulties in many computational schemes on a number of variational 
methods. 

VI. THE FIRST VARIATION. Since the variations Sy and 6y are independent 
to each other, we take the first half of Eq. (10) as 

6J&) = J 
tb - 

GyLydt -+ 1 
tb - 

6yQdt = 0 
t0 to 

(30) 

Equation (30) is not in a ready form for estimation. We prefer to use 61 
which can be obtained from the bilinear expression I given in Eqs. (20) and 
(21). Let 

61 = 61(6y) + 61(&y) (31) 

The first part of the above expression can be derived from Eqs. (20) and (21) 
as 

6X(&) = J 
tb 

[(ay’+yy)6;’ + (By’+Ey)SLldt (32) 
t0 

Integrating by parts one obtains 

'b 
61(6;) = (ay'+vu>sLI - I 

tb - 
6yt (ay'+Yy)' - (By’+Ey)ldt (33) 

t0 t0 

It is recognized that the integrand in the last term of the above formulae iS 
LY* Solving for the last term we have 

I 
tb - - tb 

GyLydt = (aY'+YY)6Y I - 61&) (34) 
to t0 

Substituting Eq. (32) into (34) and then Eq. (34) into (30) one obtains 

6 J&h = bbyb’+Ybyo)~yb - (aoYo’f~oYo)GYo 

‘b 
- / [(ay’+yy)&y’ + (By’+Ey)6yldt 

t0 

+I 
tb - 

6yQdt = 0 
t0 
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The above equation contains only 6y and 6y' and none of the variation of the 
higher derivative such as 67' for a second order system. The dependent 
variable also contains only y and y' and none of the higher derivative such as 
Y" for a second order system. 

VII. ADJOINT VARIABLE FAR END VALUE FOR INITIAL VALUE PROBLEMS. For a 
second order system the initial values of the function and its Elrst 
derivative are given, i.e., y. and yo' are known in Eq. (28). The far end 
values for the adjoint system Yb and yb' are found from Eqs. (28a) and (28~). 
Since the variation of a constant is zero, then 

and 
6yo = &y,’ = 0 (361 

&yb = &Yb 'CO (37) 

The conclusion 6Yb = 0 in Eq. (37) is important in that the-first term at the 
right side of Eq. (35) vanishes. Thus the coefficient of 6yb is not necessar- 
ily zero. This implies that the function Yb and its derivative yTat the far 
end are not related as such. By not using any local boundary conditions at 
the far end, the computation can start at the near end and carry on in one 
direction. 

Thus Eq. (35) is simplified to 
tb - 

6J(&) = -(YoYo+uoYo%o + I_ h'Qdt Lo 
-,tb [(q+Sy')6; + (yy+cry')d;']dt 

to 
(38) 

It is noted that the above equation does not have boundary terms to be 
satisfied at the far end at time tb. This is consistent with the notion of 
"initial value problem" physically. 

VIII. TRANSFORMATION OF COORDINATES. The integral sign in Eq. (38) can 
be converted into a summation sign if discrete intervals for integration are 
used. Since the analysis is an initial value problem, without losing any 
generality we may let 

to = 0 andtb=l , (39) 

that is the independent variable is within the interval 

O&t<1 (40) 

Equation (38) can be discretized by letting 

5 = Kt - m+l 

O 4 5 < 1, 0 G t G 1, m = 1,2,...K 

where K is the number of intervals. 
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Thus 

dS. = Kdt dt = K-Ids 

The differential relationship is 

or 

where 

dy dY 
it 

= K -- 
d5 

Y ’ = K; 

(‘1 = ;; ( 1 

(43) 

(44) 

(45) 

(46) 

Then Eq. (38) becomes 

6J(6y) = 0 

= -(~oyo+aoK;o)6;o + ; I1 6;(m)QK-'d5 
m=l O 

- f J1 [(Ey(m)+SK;(m))d;(m) 
" 

f {(,,(m)+,K;(m)]K6;(m)]K-1dE (47) 
m=l 0 

PIECEWISE SPLINE FUNCTIONS. 
y(m)(:T*in terms of 

We may express the variables y 6-d and 

P 
iecewise 

functions Y(m) and Y m) 
spline function aT(<) and the node point 

as follows. 

y(m)(c) = aT(5) Y(m) 6yCrn) = [bY(m)]Ta(S) 

;(m)(g) = iT(E) u(m) B;(m) = [ sY(qT;(S> 

&n>(E) = aT(<);(m) d&n> = [d;(m)]Ta(E) 

m = 1,2,...K 
h 

yo = aT(l)Y(0) 
b l 

; ,  = aT(l)Y(0) 
- b - 

&Y, = &Y(O),(l) 
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If Eqs. (48) through (54) are substituted into Eq. (47) one obtains 

0 = -[5;(o)]Ta(l)[y,aT(l) f ccoK;T(l)]Y(o) 

K 
+ 1 [6;(m)]T Km1 I1 a(E)QdE; 

m=l 0 

- f [SY(d]T i:, a(r)[~K-'a~(E,) + i3ktE)ldE Ycrn> 
m=l 

- ; [&qT J1 i<5>[ yaT(Z) + ctGT(E)]dS Y(m) 
m=l 0 

(55) 

This simplifies to 

0 = -[6;(o)lTa(l)[y .aT(l) + a,KLT(l)]'l(D) 

where 

K 
+ >: Ig&n)]Tq(d - i [B;(m) 1 T p(m) Y(m) (56) 

m=l ma1 

q(m) = K-1 I1 a(S)Q(S)dS 
0 

and 

= [qp, 92(m), (13(m), q4(m)]T (57) 

P(m) = /l {a(~)[E(m)K-la'(~) + B(m)&)] f i(S)[y(m)aT(S) + a(m)KiT(E)])dc 0 
= E (dKdlB + B(dC + y(m)D + a( (58) 

or 
[pij(m)l = ~(~)K-'[bij] + @(m'[~ij] + Y(")[dij] -t CI(~)K[~~~I (59) 

where 

B = CbijI I* JA a(S)aT(5)d4 (60) 

C = tcij] = ,; a(S>:T(F)dS (61) 

D = [dij] 3 J1 i(E)aT(S)dC 
0 (62) 

Es teij I = ( k):T(S)dS (63) 
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X. CUBIC HERMITE POLYNOMIAL SPLINE. The cubic Hermite polynomial spline 
is continuous in the functional values and its first derivatives across the 
nodes. Since we have no second derivatives for a(S) in Eqs. (58) to (63), no 
higher order spline is necessary for thFs problem. 

The cubic Hermite polynomial gives 

l-al(S) = 1-3c2+2E5-‘1 
I I 
I a2CC.l = 5-x2+t3 I 

a(S) = I I 
I ag(E) = 3t2-2C3 1 
I I 
I aS(5) = -p-r-< 3 I 
I- -1 

whose derivatives are 

I-. -1 
I al(S) = -65+652 I 
I . I 

its, = 
I a2(5) = l-45+39 I 
I . I 
I a3C.E) = @3x2 I 
I . I 

I a4(E) = 
-2C+3C2 1 

- -I 

It is obvious from the above equations that the node point values are 

a(0) = [al(O) a2(0) a3(0) a4(o>lT 

=[l 0 0 OIT 

k3 = &O) &O) l3(0) &WIT 

=[O 1 0 OIT 

a(1) = [al(l) a2(1> ag(l) a4(1>lT 

=[O 0 1 OIT 

i(l) = [:1(l) i*(l) i3(1) i4(1)1T 

=[O 0 0 1IT 

(64) 

(65) 

(66a) 

(66b) 

(66c) 

(66d) 
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We wish to form a vector whose components are taken from the function and its 
derivative at the left node and then the same at the right node. From Eqs. 
(48), (491, and (66) we have 

(67) 

If we define 

y(m) = [y,(m) y,(m) y3(m) Yq(m) 1 T (68) 

Then 

q(m) = y(m)(o) (69a) 

Qm) = ;Crn>(oj (69b) 

y,(m) = y(m>(l) (@cl 

Y4(m) = ;(m)(l) (69d) 

The above implies that the same node point has been represented by two 
notatiotls as follows 

yh+l>(o) = y(m)(l) 

&+1>(o) = ;(m)(l) 

By expanding Eq. (68) for different m one obtains 

Y(O) = [O 0 Q(O) Y4WT = [O 0 y(O)(l) y(@(l)lT (71a) 

y(l) = [q(l) Q(l) YJ(~) Y&)]T = [y(1+o) ;(1+o) y(l)(l) ;(l+l)]T (71b) 

y(m) = [y,(m) y,(m) y3(m) y4(d]T = 

[Y(qo) Y (0) Y(m)(l) Y l (m) ‘Q)lT (7lc) 

y(mfl) = [yl(m+l) y2(m+l) y3(m+l) y4(mfl)]T = 

(71d) 
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Thus we have 

and 

for m = 0,1,2,...K. 

y,h+l) = y3(m) 

y2(mfl) = Y&n) 

Similar to the above equation one can prove from Eqs. (50) and (5 
adjoint variations are 

and 
6~,(m+l> = 6;3b) 

6;2(m+l> = 6$+(m) 

) that the 

(734 

(73b) 

XI. METHOD OF SOLUTIONS. First we take the last term of Eq. (56) which 
iS 

R3 = - f [sYl(m) 6Y2(m) 6Y3(m) sY4(m)][pij(m)][Yl(m) Y,(m) Y3(m) y4(m)]T 
m=l 

(74) 

Using the relationship from Eqs. (72) and (73) gives 

~~ = - i ([pll(m)~3(m+l) + p12(m)y4(m-l) + p13(m)y3(m) + p14(m)Y4(m)]6;3(m-l) 
m=l 

+ [p21Wy3h-l> f p22h)y4kl) f p23(m)y3(m) + P24(dy4(m) ]6Y4(m-1) 

f [P31(dy3(m-l) + p32(dy4(m-1) + P33b)Y3(d + p34(m)Y4(m)]sT3(m) 

+ [p41(m)y3b-l) -1- p42(m)~4(m-l) + P43(m)~3(m) + p44(m)~4(m)]s;4(m)1 (75) 

R3 = - [pll(l)yg(O) + pl2(')y4(O) + pl3(1)y3(l) f ~14(~)Y4(')]s'r3(~) 

- [p21(1)y3(o) + p2*(l)Y4(') + p23(l)Y3(l) f p*4(l)Y4(l)]6Y4(') 

"I:( [PI1 (m+l)y3(m) + p12h+l)y4h> + p13(m+l>y3b+l> + p14(m+l)y4(m+l) 

+ [p-Jl(m)Y3(m-l) -I- p3*Wu4(m-l) -I- p33(m)Y3(m) + p34(m)u4(m>ljs'i3(m) 

K-l 

1 

- 1 {[P21Wl)Y3(m> f ,22Wl)y4(d + P23h+l)y3h+l) f p24(m+l) 
y4 (m+l)] 

m=l 

+ [P41b)Y3(m-l) + p42(dy4(m-l) + p43(dy3(d + p44(dy4(d])s~4h) 

- [p31(K)y3(W + p37W)y4W-1) + p33(K>y3(K) + p34(K)n4(0]s;3(K) 

- [p41(K)y3(K-1) + pq;y4(K-l) + p43(K)Y3(K) + p44(K)Y4(K)lL5Yq(K) (761 
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It is noted here that the variations at the far end are 

B;~(K) - = 6)‘b = 0 (77) 

6YbcK) = 6yb’ = 0 (78) 

by virtue of Eqs. (36) and (37). Thus the last two terms of Eq. (76) drop 
out. 

It is again important to emphasize here that the computation does not 
contain the condition placed at the far end boundary. The calculation starts 
with the initial conditions and carries through in one direction. 

The second term on the right side of Eq. (56) gives 

~~ = f Lql(m> q2W q3h> q4(m)] [b;3(m-l) &$+(m-1) 6;3b-d &+(d]T 
m=l 

= ql(l)g;g(o) + q2w&m 

+ Iif [slh+l) + ,3(dl~;3hd + :i:192(mtl) I- q(p) 1 Gq(m) 
0 

+ q3(K)&IK) + q4(K)g;4(K) 

The last two terms drop out again by virtue of Eqs. (77) and (78) . 

The quantity q(m) is again expressed as 

(79) 

qll b-4 = ~-1 1: ag(5)Q(m)(E)dt R = 1,2,3,4 (80) 

The first term on the right of Eq. (56) is 

R1 = -[O 0 BY3 co) S$“)JIO 0 1 O]Ttyo[O 0 1 01 + aoKIO 0 011 

= -6Y3(0){~oY3(o) + u,KY~(~)} 

)[O 0 YpYp) 

(81) 

Combining all the above results and substituting into Eq. (56) we have 

0 = Rl f R2 f R3 (82) 
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0 = {-{yoY3(o) I- QKY~(~)) 

+ q&l) - [plp)yj(o) f p1*( l)Yq(O) I- p&)Y$) + pl4(1)Yp])sYp) 

"I- {q2(1) - [p+)Yp) I- p2$1)Y4(O) + p&l) -I- p2pYp])&(o) 

-I- .fl {[qpw + 43(m) 1 
m=l 

_ ~pll(m+l)p3(m) + p12(m+11y4(m) + p13(m+l)y+m+l) + p14(m+l) Y4(m+l)l 

- [p31(m)y3(m-l) + p32(m>y4(m-l) f p33(m)y3(m) + p34(m)Y4(m)11G3(m) 

+ ‘il {q2hfl) + n/p)1 
m=l 

- [p21(m+l)y3(m) + p22(mfl>y4(m) + P23(m+l)y3(m+l) f p24(m+l)Y4(m+l>] 

- [P41(m)y3(m-1) + p42(m)Y4(m-1) + p43(m)Y3(m) + p44(m)Y4(m> IL&~(~) (83) 

XII.. RECURSIVE SOLUTIONS. Since the variations dY3(O), sY4('), 6Y3(m), 
and &Yqtrn) in Eq. (83) are all arbitrary, the coefficients of a12 these 
variations must vanish. 
6Y3(“) and 6Y4(O). 

We first take the coefficients of the variations 

I-- 
lPl3(1) 
I 
Ip2p> 
I- 1 L -I 

(84) 

It is noted that P3c”) and Y4c") are the initfal conditions of the problem 
that is from Eq. (67) and (46). 

np = y, (85) 

y4(0) = ;, dy = K-lye' = K-1 _- 
dt 

(86) 
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We can solve for Y3(1) and Y4(1) Ln terms of these initial conditions by 
inverting the two by two matrLx in Eq. (84), 

L -1 I- 

(87) 

For a general case where m = 1,2 ,...K-1, we have by setting the 
coefficients of 6Y3(m) and 6Y4(m) in Eq. (83) to zero. 

-1-1 
p14(rn+l) I 

I 
p*4(m+1) I 

-’ 

- I 
I(P++‘) 
I- 

+ p43(m)) (P*2(m+ 

I- -1 I- -1 
!P31 h) p32(m)l IYj(m-l)l . I 

1) + p24b) 1 i iY4(m) 
-1 L - 

I- -t 

- I I + 
p42(d[ /Y4(m-l)I 

‘ql(m+l) -I- cq 
I 

1 
P41(") 1 s2Wl) f q4(m) I 
- -I I- -1 L -1 

(aa) 

continues until we obtain 

XIII, NUMERICAL RESULTS AND DISCUSSION. The analysis presented in 
previous sections will now be tested by way of some numerical examples. Let 
us consider a simple oscillator subjected to a harmonic iorce. The 
differential equation can be written as 

e. 
my + ky = f, CDS wfr OGtr;T Wd 

where T is some finite time of interest and a dot (') denotes differentiation 
with respect to time. The initial conditions are 

~(0) = y. and ;(O) = Y, (8%) 

209 



The system of Eqs. (89a) and (89b) is normalized with respect to T and it 
becomes 

y"" +t k*y* = f* cos wf*t* o< t*<l (gOa> 

and 

y*(O) = yo* and y*(O) = yO* (9Ob) 

Through the following change of parameters 

t* =I 4 
dt 

T 
, dt* = -- 

T 

dy 
y*(t*> = y(t) , y*'(t*) = T --; (91) 

k*=kT2/m , f* = foT2/m , tif* = wfT 

YO” = YO , YI* = TY~ 

Comparing Eq. (90a) with Eqs. (24) and (I), one has 

a = constant = 1 , E = -1 
(92) 

8=0 , Y = 0 and Q = -f* cos wf*t* 

From the data presented here, we further set 

m = 1.0 , k = 1.0 , f, = 1.0 , Wf = 0.5 

The parameter T is given for each set of sample calculations. 

First, Eq. (84) can be used exclusively to obtain all the solutions. 
This is demonstrated in Tables I through III. In these tables T has taken to 
be ten, five, and two, 
taken to be ten. 

respectiv$ly and the number of steps for all cases is 
Both y(t) and y(t) are shown and the exact solutions are 

given in parentheses for comparison. It is clear that the results are 
convergent, i.e., they are improved as the interval of time is decreased. 
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TABLE I. SOLUTION TO A FORCED VIBRATION PROBLEM OF A SIFfPLE OSCILLATOR 

(0 C t C 10, Ten Steps. Exact Solution Shown in Parenthesis) 

T----i- 
I I 

t y(t) I ;w I 
I I I I 

I I io i 1.0000 I (Given) 1.000 I (Given) I 
I 2.0 I 1.7590 1 ( 1.7684) / -0,711 1 C-0.674)! 
I 4.0 I -1.1495 1 (-1.0938) 1 -1.450 1 C-1.512)( 
1 6.0 1 -1.8534 1 (-1.9195) I 0.867 I ( O-773)1 
1 8.0 1 0.2261 I ( 0.1663) 0.564 1 ( O-689)1 
I 10.0 I -0.0531 1 ( 0.1139) 

/ 
-0.404 1 (-0.381)i 

I I I I I I 

TABLE II. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR 

(0 G t 1; 5, Ten Steps. Exact Solutions Shown in Parenthesis) 

1 I I 
It I y(t) I ;w 7 
I 

ti 
I I 

--l----I 
IO I 1.0000 1 (Given) I 1.0000 I (Given) 

1.8314 1 ( 1.8315) I 0.4991 1 ( .5012) 
1.7646 1 ( 1.7684) 1 -0.6828 1 (-0.6740) 
0.5536 1 ( 0.5654) 1 -1.6161 1 (-1.6079) 

-1.1074 -1.5060 1 (-1.5121) 
-2.1221 (-2.1217) 1 -0.4129 1 (-0.4350) 

i i- I I 

TABLE III. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIt?lPLE OSCILLATOR 

(0 G t G 2.0, Ten Steps. Exact Solutions Shown in Parenthesis) 

I I I I 
It I Y(t) I kt> I 
I 

T----+---l-- 
I I 

l 
lo.0 I 1.0000 I (Given) I 1.0000 I (Given) I 
lo.4 I 1.3892 1 (1.3892) I 0.9184 I ( .9184) I 
1 0.8 1 1.7132 1 (1.7132) 1 0.6760 1 C-0.6760)) 

1.9116 I (1.9117) I 0.2961 1 ( 0.2966)l 
1.9379 1 (1.9382) 1 -0.1752 1 (-0.1742)) 
1.7676 i (1.7684) 1 -0.6754 1 (-0.6740)1 

I i I 1 - 1 - I --- 
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Some diSCU6siOn on the present formulation compared with previous work 
[3,4] is In order here. In previous work on unconstrained, adjolnt 
variational formulation, the point of emphasis was to free the requirements of 
satisfying any of the initial conditions and to let the approximate solution 
converge to them. In the present analysis it is shown that the far end 
conditions need not be considered in a variational formulation of approximate 
solutions. A more detailed comparison in terms of numerical convergence, 
competency, efficiency, etc. is planned. 
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TIME-STEPPING METHODS FOR SECOND-ORDER EVOLUTION EQUATIONS 

Vassilios A. Dougalis and Steven M. Serbin 
Department of Mathematics 

University of Tennessee 
Knoxville, Tennessee 37916 

ABSTRACT. Some recently developed fully discrete methods for the numer- 
ical %-in of linear, second-order systems of ordinary differential equa- 
tions, arising e.g. from finite difference or finite element semidiscretizations 
of hyperbolic equations, are reviewed. These methods are of high order of 
accuracy, have desirable stability properties and are computationally efficient. 
Extensions to problems with first-order time derivative terms (arising e.g. 
from the equations of structural dynamics) and nonlinear problems are also 
considered. 

1. INTRODUCTION: This paper traces several investigations which the 
authors have pursued in the study of second-order systems of differential 
equations. We first consider a linear problem in an abstract setting and 
recall the two-step "cosine" schemes studied first in [3] for a homogeneous 
problem and extended in [6] to the nonhomogeneous problem. Next, we introduce 
a first-order ti 
several methods 
a general class 
lems. Finally, 
like methods whi 
problems L-121. 

me-derivative into the problem; in [7) we establish that 
in the literature can be explained as particular examples of 
of implicit Runge-Kutta methods when specified to these prob- 
we make some preliminary remarks on a class of "Rosenbrock"- 
ch we are currently proposing for some nonlinear second-order 

2. COSINE METHODS. We consider a second-orde,r evolution equation in an 
abstract setting. Let H be a complex Hilbert space endowed with an inner 
j)roduct (., *) and corresponding norm I/*// . Let A be a 1 inear operator 
with domain g(A) , dense in H . A is assumed to be positive definite and 

it may be unbounded. For uO, u: given in H , the self-adjoint on p(A) ; 

problem to be solved is 

utt + Au = 0 , 0 < t < t* - 

u(0) = u” , l/JO) = ut” 

For example, with H = RN A a hermitian, positive definite N y N matrix, 
(1) is just a system of o;dinary differential equations. Such systems can 
also be realized as semidiscretizations (finite difference or Galerkin) of 
certain second-order hyperbolic partial differential equations. 

It is well-known that the solution to (l), under the assumptions 
0 u" E $(A) , ut E $(A"') , can be obtained uniquely as 
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u(t) = cos(t A"')u' + A 
-l/Z sin(t A"*)uF (2) 

Further, the solution (2) satisfies the recursion (for h :, 0 constant) 

u(t) = 0 (3) u(t + 2h) - 2 cos(h A"*) u(t + h) + 

The approximation scheme is based on (3) . We 
approximation to cos T , T 10 which satisf 

IR(-r) - cos T/ 5 C ?+* , 0 5 T 5 0 

/R(T)] 5 1 , 0 2 T II-I 

suppose that R 
ies 

(T > is a rational 

(4) 

(5) 

for certain constants C, 0, Q, v . (4) represents an accuracy requirement. 
while (5) is for stability of the scheme; when o=+=, we shall obtain 

unconditionally stable approximation schemes. Then, we determine w" E d(A) 
to approximate u(nh) by the three-term recurrence 

n+2 
w - 2 R(h A'/2)un+1 t wn = 0 (6) 

We prove in [3] the error estimate 

maxljwn - u(nh)(j = O(h') 
n 

(7) 

In order for the approximation scheme (6) to be effective, we propo 
the approximations R(T) determined from the generating relation 

se 

By set 
mation 

ting z = T and truncating at n = s , we obtain the rational approxi- 

(1 -t x2 z2)s m cos z = c QI y(x) zzn (8) 
n=O 

p(x) = ; g$ 
j=O + 

(,Zj) x2tn-j1 (9) 

Rs(x; -c) = 2 2s 
(1+x T) 
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which satisfies (4) with v = 2s and for which there exists a parameter 

x(S) > 0 such that (5) holds with n = + m for x 2 x(') . The computationa 

advantages of (10) are two-fold: i) R(r) is, in fact, a function of -I* , 

so Al'* is never computed, and ii) the denominator of R(h A1'2,) is of 



the f'arm (I +t x2 h2 A)' hence one matrix decomposition and s back 
solves are required for eich time step. 

The cosine approximation (10) is related to a class of rational approx- 
imations to the exponential introduced by Saker and Bramble [Z]. This con- 
nection enables us in [8] to employ the "real pole sandwich" results of 
Ntirsett and Wanner [lo] and the "order stars" of Wanner, Hairer, and Nfirsett 
[l4] to further study stability and accuracy dependence on the parameters x 
and s . 

The extension of the cosine schemes to nonhomogeneous equations 

utt + Au = g(t) , (11) 

is considered in [S]. The recurrence relation becomes 

nt2 
u - 2 cos(h A1'2) un+' + un = 

1 
yn I h 

I 
,-1/2 sin(h A 1'2 s)[g((n f 2 - s)h) + g((n + s) h]ds 

0 

(12) 

Approximating (12) by 

r-+2 
w - 2 R(h A'/2)un+1 + wn = 6" (13) 

we show that if we select 6" so that [iv" - 6"[( = O(h Vt2) , then the error 

estimate [[tin - u"(/ = O(h') maintains. 

In order for the scheme (13) to be viable, the choice of hn as a 

quadrature for yn is nonstandard. For example, a fourth-order scheme 

(v = 4) uses.(with B = x2 a parameter) 

R(h A"2) q (I + fh2 A)-2[I + (2~ - l/2) h2 A + (By - B f &h4A2] 

(14) 
hn = (1 + d A) 

-2 h2 
[j$(g n+2 •t 10 g n+l _ + 9") + h2(248 - l)A g"+li] . 

The result of (14) is an algorithm implemented as follows. De;:;e 

B= 1+gh2A. Then we determine pn via Apn = g n'2+10g +g" P define 
2 

$n = !$pn + h2(24@ - 1) g n+l ] , solve B q tl) F -h2[I t (213.- +h2A] tin+' f $, 

solve B q(‘) = A q(l) , and set un+2 = 2 un+l - w” + q(*) , 

Finally, we observe that if A = M-'K with M and K sparse (e.g. the 
Galerkin semidiscretization of the wave equation), each of the equations to 
be solved in the above algorithm can be multiplied through by M *and hence 
all matrix operations are sparse. 
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3. DIAGONALLY IMPLICIT RUNGE-KUTJA FOR DAEIPED PROBLEMS. We next --._~ _. . ..",_ - .-;- 
to extendourconsidera-~~~~~~3~~ond~~~-~~~~-s~~~-enls with fl rst-order 
derivatives also present. While a class of two-step schemes extending 
to certain of these evaluations has been studied by one of us in [13], 
find that a more efficient treatment is afforded by the application of 
certain implicit Runge-Kutta methods studied by Crouziex [5] and Alexander 
[l] on an equivalent first-order system. We specifically study the linear 
structural dynamics equation 

M Ytt + c y, "t K y = f(t) (15) 

with M, C, K sparse, positive definite N x N matrices. Brusa and Nigro 
[4] propose a (globally) third-order, computationally efficient single-step 
scheme for (15); our goal in [7] is to identify their method as equivalent 
to a specific choice of implicit Runge-Kutta method, which then allows US 
to generalize their scheme. 

A first-order system equivalent to 15) is 

which, with obvious notation, is 

(16) 

TO (18), we employ Crouzeix's form of implicit Runge-Kutta scheme, defined n 
for an equation of the form yt = y(t, p) by a tableau of coefficients 

all *'* alq 

aql - * - aw 

'1 

-k 

b 
9 

such that if Qn i =.F(tn,is yn i) W 
, 9 

ith t, i = tn + pi h 3 we solve 
9 

Qn, j “Yttn,i ,p,,fh z a- 
j=l lj 'n,j) 

and set 

9 

.Y n+l 
=yn + h 

9 
c biQrli 

i=l , 

(201 

(21) 
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In particular, Alexander discusses the DIRK (diagonally-implicit Runge- 
Kutta) schemes, wherein aij = 0 , i < j and all aii = 6 . It is easy 

to see that for (16) (hence (15)), a DIRK scheme is accomplished by the 
following algorithm: 

For i = l,..., q , 
i-l 

(i> Let ri 'I= un + h z aij un j 
jzl ' 

i=l 
s. E v 

1 n + h j=l 
C aij V 

n,j 
(22) 

f 
n,i ' f(tn,i) 

(ii) Solve 

(M f Bh C + B* h* K) v n,i 
= -K(ri + Bh Si) - C Si f fn i 

, 

(iii) Set LJ~,~ = Bh Vn,i + si 
9 

Then, form u,,,+, = un + h c bi u,, i 
i=j ' 

9 
and v n+l = 'n t-h c biVni 

i=l , 

The study of the algorithm (22) is facilitated when one notes the cor- 
respondence with certain rational exponential approximations discussed by 
Nfirsett [9] . Of particular note, though, is the information conveyed in the 
T- 9 1 where loads are to be evaluated, which was not found in earlier work 

specifically for the linear problem. Alexander [l] tabulates the coefficients 
for several specific A-stable and strongly S-stable DIRK schemes, to which we 
apply (22) for a model problem in [7] . 

4. A SCHEME FOR A NONLINEAR PROBLEM. Our current interest encompasses 
certainnonlinear second-order problems of the form Utt 

= F(t, u, ut) , but 

we shall limit our consideration here to the simpler problem utt = C(u) . 

Of course, we could apply the implicit Runge-Kutta methods indicated above 
(or some similar methods suggested first by Rosenbrock [ll]); again, we shall 
defer these considerations to a future paper. Our goal here is to produce a 

Rosenbrock-type method which is 4th order accurate, two-stage, and reduces t0 
a scheme (mentioned above) introduced by Baker and Bramble when applied with 
G(u) = -Au . In particular, each in this class of schemes is stable on a strip 
containing the imaginary axis for certain choice of parameter. 
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Again, we convert to a first-order system of the form 

Yt = F(Y) , Y = [IJ, vJT , v=u t * 

The idea of Rosenbrock was to introduce the Jacobian FY directly into the 

scheme, rather than introducing it later in a Newton-like effort to solve non- 
linear algebraic equations. For the Baker-Bramble analogue, though, we intro- 
duce the aq~n&tc of the Jacobian FY . Specifically, we propose a two-stage 

computation of the form 

11 - W* F~IY,.,)lK, = [I + ah Fy(Y,)]F(Yn) 

[I - gh* F2(Y )]K = [I + eh F (Y )]F(Y + yh K,) Yn 2 Yn n 
(23) 

+ sh Fy(Y, + r,hK+F(Y, + vh Kl) - u K, 

Y 
n-t1 

= Yn + h(bl Kl + b2 K2) 

Applied to a linear problem, i.e. F(Y) = BY , it can be seen easily 
that (23) reduces to the difference equation Yn+, = r(hB)Yn , where 

1 + z + (; - 2& + ($ - 2fJz3 + (& - B I- B2h4 
r(z) = - 

(1 - B z2)* 
(24) 

is indeed the fourth-order Baker-Bramble exponential approximation. 

When converted over to the notation of the second-order problem, letting 

Ki = [Pi QiIT > we find that (23) requires that we solve at each time step 

four systems with the same N x N system matrix 

[I - gh2 Gu(un)JP, = v,, + ah G(u,) 

[I - Bh* Gu(~,,)lQl = ah Gu(un)vn 

[I - b2 Gu(un)]P, = v,, + yh Q, 

[I - gh* G u 

+ (e + y) h G(un + vh Pl) - v P, 

(u,)]Q, = e h Gu(un) l [v,., + ;h Q,] + G(u, + Y h Pl) 

+ sh Gu(un + ri h P,) l [v, + vh Q,] - u 9, 

(25) 
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The parameters of the scheme are determined so that the local truncation 

error (determined here for the scalar problem Yt = F(Y)) is O(h5) . This 

requires that 
2 

b, K, + b2 K2 = [F + $ FyF + %Fyy F* + F; Fl 
(26) 

h3 
+ ZiFYYY F 

3 
-+ 4 FYY Y F F2 + F; Fi] t O(h4) 

By requiring that the parameter B remain free for stability assignment, 
(26) eventuates a set of nine nonlinear algebraic equations in the nine remaining 
parameters (c.f. [12] for details). We have ascertained the existence of many 
possible solutions of this system; it remains for us to detelmine which of 
these solutions provides the best (e.g. smallest error constant) of the 
schemes (25) and to report the results of ongoing numerical experiments. 
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ON NUMERICAL BOUNDARY CONDITIONS FOR HYPERBOLIC SYSTEMS 

Max D. Gunzburger William J. Layton 
Department of Mathematics School of Mathematics 

University of Tennessee and Georgia Institute of Technology 
Knoxville, Tennessee 37916 Atlanta, Georgia 30332 

ABSTRACT. It is well known that numerical algorithms for the approxima,te 
SOlut?~nofirst order hyperbolic partial differential equations which are 
stable for the Cauchy problem and for scalar initial-boundary value problems are 
often unstable when used for initial-boundary value problems for systems. These 
instabilities arise from the particular boundary conditions used to close the 
discrete system. Two methods of generating stable boundary treatments are 
presented. The first is applicable to finite difference and Galerkin finite 
element schemes and is based on the theory of characteristics. The second scheme 
is based on "energy" estimates of the solution in norms equivalent to L2 , but 

which lead to different discretizations. The latter scheme is used in conjunction 
with Galerkin finite element methods. 

1. INTRODUCTION. It is often observed that instabilities in solving 
hyperbolic equations are caused by the incorrect treatment of the boundary con- 
di tions. Algorithms which are stable for the Cauchy problem can be unstable 
when used in conjunction with particular boundary treatments. What clouds the 
issue further is the observation that boundary treatments which are stable for 
scalar hyperbolic equations may be unstable when applied to systems. 

Consider the system 

with the initial conditions u(x, 0) , v(x, 0) and the boundary conditions 
u(O, t) I ~(1, t) given. It can be shown that this problem is well posed. 
In solving the equations numerically one generally needs special equations to 
find v at both boundaries, even though analytically it is determined. A 
natural procedure is to do something special for the variable v by itself 
since u is determined at both boundaries by the given boundary conditions. 
It is shown in [l] that if one uses the Lax-Wendroff finite difference method 
to solve (1) in the interior and uses quadratic extrapolation to determine v 
at both boundaries, the resulting scheme is unstable, This is in spite of 
the fact that in [z] it is shown that this scheme is stable for scalar hyper- 
bol ic equations. Similarly, in [3] it is shown that the obvious use of the 
Galerkin finite element method to solve (1) is unstable, although the scalar 
case is well behaved. 
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In this paper we present two boundary treatments which are stable for 
systems of hyperbolic equations. The first scheme is discussed in Sections 
2 and 3 and is based on the use of characteristics to carry correct information 
to and from boundaries. The second scheme, discussed in Section 4, is based 
on measuring the solution of the differential equation in a norm which, 
although equivalent to the L2-norm, leads to a different discretization. 

2. THE CHARACTERISTIC SCHEME FOR QNITE DIFFERENCES. For finite dif- -- 
ferences we will use the theory developed in [2]. Without loss of generality 
we assume that the system is in characteristic form, i.e. 

"t =nux 02x51 

where A is a diagonal q x q matrix with elements Ail # 0.. This system can 

be partitioned into the systems 

I 
% 

= ,J uJ 
x ’ 

and 

uJJ + = ,IJ uJJ I, 
L A 

together with the initia 

u(x, 0) = f(x) 

and boundary conditions 

In the in terior we use a scheme 

,I < 0 , 2: PXP ' p+r=q (3) 

9 *I1 > 0 , hJ1 

1 conditions 

l&o, t) = so “II(O, t 

TT T 

> + g&t) 

(t) - uv, t) = s1 UYl, t) + g, 

n+l S 

Q-1 uj 
n-k 

= kzo Qk "j 

. . rxr (4) 

(5) 

(6) 

(7) 

(8) 

At the boundary x = 0 we have two types of conditions. The first uses the 
given boundary condition (6), i.e. 

(ui)” = SO(u;l)n + g”o . (9) 

The second kind of boundary treatment is a numerical scheme for the remaining 
I 

unknowns 
I 

"0 
e.g. 

. By construction this operation involves only these unknowns, 
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(JI)n+l = ’ 
0 c T~(uI~)~-~ 

k=O 
(10) 

We note that in general the operators 9, and Tk appearing in (8) and (10) are 

all block diagonal. Only So in (6) need not be diagonal. In addition to the 

boundary treatment (9) - (lo), there is an analogous set at x = 1 . 

We assume that the scheme (8) is stable for the Cauchy problem and that 
the scheme (8) - (10) is stable for the scalar semi-infinite problem, i.e. we . 

have O<x<r~, u a scalar with u = uI or u = ulI Using these 
ptions we can prove the following. (The proofs are supplied in [4].) 

Proposition 1 - The scheme (8) - (10) for the semi-infinite vector. 
is stable. 

assum- 

problem 

Theorem 2 - The scheme (8) - (lo), along with the corresponding boundary 
treatment x = 1 is stable for the vector initial-boundary value 
problem on 05x 11 . 

In practice one may deal directly with the non-diagonal form of the equations 
and, at least for explicit schemes, we may implement the above boundary treatment 
as a post-correction to an existing and perhaps unstable algorithm. We illustrate 
these points by the use of an example. 

Consider the system (1) with initial conditions 

4x9 0) = u,(x) I v(x, 0) = v,(x) , 

and boundary conditions 

u(o, t) = go(t) , 41 I t> = gl(t) - 

(11) 

(12) 

We then find that 

h + vJt = $(u + v)x 

(u - V)t = -$(u - v)x 
(13) 

so that at x = 0 , (u + v> is the characteristic variable coming into the 
boundary while (u - v) is the characteristic variable moving away from the 
boundary. We denote by Uo, V. the values of u and v at the boundary 

x = 0 calculated by some scheme. We then set 

u(o, t> = go(t) 

u(0, t) + v(0, t) = lJo + v. 
(14) 
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or, solving, 

40, t) = go(t) 
(15) 

v(o, t> = vo -t DJ, - 9,Wl * 
Similarly 

u(L t) = g,(t) 
(16) 

vu I t> = v, + rg, (t) - U,l . 
Thus, the bracketed terms in (15) and (16) can be considered as correction 
terms to a given algorithm and as such, one may keep all coding in existing 
programs and one only need calculate the correction terms. For explicit 
schemes, the method suggested by (14) is exactly equivalent to doing the 
boundary treatment on the characteristic variables. 

3. THE CHARACTERISTIC SCHEME FOR FINITE ELEMENTS. In this section we 
describe the characteristic scheme in conjunction with Galerkin methods. 
Without loss of generality, we may consider the system 

Ut 
=r,ux+F for O<xcl (17) 

where A is a diagonal matrix. Again, we can partition A, F, and u 
so that 

I 
Ut 

= ,I uI x -+ F1 and uil = ,I1 ul' -I- F1* . 
X 

(18) 

We impose the initial condition 

u'(x, 0) = u:(x) and url(x, 0) = u:'(x) 

and the boundary conditions 

(19) 

U1 = so uI1 at x=0 

“I1 = s, “I at x=1. 

(20) 

(21) 

Problems with inhomogeneous boundary conditions may easily be converted into 
a problem of the type (18) - (21). 

The L2-Galerkin formulation of the problem (18) - (21) is given by: 

find u1 and ul' such that 
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(“I, u1 t - *I u1 x 
- F*) = 0 

(22) 

(VI’, $’ - /\‘I uir .w F*‘) = 0 

for all v' and v" in suitable vector spaces. Here 

(VP u) = ’ VT u dx . 
0 

(23) 

At any time 

seeking (u', u 

t , an approximation to the solution of (22) is found by 

9 E u, x u2 such that (22) holds for a71 (v', v") E 

"1 x "2 where U I9 Up, V, and V2 are finite dimensional spaces. Here we 
assume that V. = 

J Uj except perhaps for boundary effects. Furthermore, we 

shall assume that, e.g. V = H x H x H x 0.0 x H where H is a space of 
scalar functions and where'the number of products is determined by the dimen- 

sion of u' . 

Let {$,,..., 6,) be a basis for H . We may construct another basis 

for H by setting (assuming that Go(O) # 0 and i,(l) # 0) 

6,(U * 
+,(x) = i,(x) - - +Jm ‘J(‘) 

QJW = i,(x) - 
i,(O) ^ 
s,(o7 ‘Lo(O) 

and 
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<j<J-1. - _ 

Then the new basis {+o,~*~, $JI has the properties that 

~j(O) = 0 f or j > 0 and qj(l) = 0 for j c J 

If p and r are the dimensions of U’ 

choose the bases 
and ul' , respect 

Ie[tijj k=l 3. .*, p and j = O,..., J 

{e; s'j? k = I,..., r and j = O,..., J 

(24 

ively, then we 



for the space LJ, and U2 , respectively, where e[ and e; are the k-th 

unit vectors of dimension p and r , respectively. Then since u1 E U1 

and uI1 E IJ" , i.e. each component of u1 and uI1 is in H , we may 
write 

and (25) 

P(x, t) = j;. cj’(t) Qj(X) . 

where C1 
j 

and CiI are vectors of dimension p and r , respectively. 

The values of C:(O) and C;'(O) for j = O,..., J are determined by 

solving an interpolation problem using the initial data. 

The bases for V1 and V2 are similarly chosen. Substitution of (25) 

into (22) then yields 

d cka d$, 
'{($i' @j) + - Xi ($i' +I ‘j 

kQ) = ($L, FkQ) (26) 

for R = I, II and i = O,..., J and k = l,..., p if R = 1 
and k = l,..., r if L = II . 

Here eke represents the k-th component of the vector 

for A Jand F . 

and similarly 

If we let 
QJ- 

CM) ij = (I, ~j) 9 (Q)ij = (ILi, 2) for i, j = O,*-*s J 

and 

(~)i = ($i, FkQ) , ($)i = c!” for i = O,..., J , 

then (26) may be expressed as 

The matrix M is the Gram matrix for the basis (1~~ , * * d I ~~1 under the 

inner product (23) and therefore M is symmetric and positive definite. 
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As a consequence of (24) we have that 

whenever either i or j is different from 0 or J . Therefore the 
matrix Q is skew-symmetric except for the (0, 0) and (3, J) elements. 
These elements are given by 

1 2 
(Q)oo= - 2C$,(O)l < 0 and (Q),, = ;bJ(1)]2 > 0 . 

The boundary conditions (20) and (21) may be applied by constraining the 
ka coefficients c. 
J appropriately. We stress that 

(VY “t - A ux) = 0 and (v, ut - A ux) = 0 

for non-diagonal A are not equivalent at the boundaries. In the latter case, 
a characteristic variable is left unconstrained at the boundary, while in the 
former case some linear combination of characteristic variables is left un- 
constrainted at the boundary. As indicated by the results of [3], using non- 
diagonal boundary treatments can yield instabilities. However, the diagonal 
boundary treatment yields stable schemes. Of course, in practice, we may 
implement the stable boundary treatment on the non-diagonal system in much 
the same manner as that employed in Section 2 for finite difference methods. 

We may prove the following concerning the above Galerkin method. (Ag ain, 
see [4] for details.) 

Proposition 3 - The above Ealerkin method for a scalar initial-boundary 
value problem is stable. 

Proposition 4 - The above Galerkin method is stable for vector semi- 
infinite problems, i.e. problems posed on o<x<-. 

Theorem 5 - The above Galerkin method is stable for the vector initial- 
boundary value probJem, i.e. posed on 0 < x < 1 . 

Thus, as in the finite difference case, boundary treatments based on the 
use of characteristic variables yield stable approximations. 

3. THE CHANGE OF NORM SCHEME. We consider the general hyperbol-ic initial- 
boundary value prob'lem (A may be assumed diagonal) 

% = n(x,t)ux + B(x,t)u f F(X,t) for 0 < X < J , t > 0 (23) 

along with the initial conditions 
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) for Ozxcl (24) u(x, 0) = uo(x 

and boundary conditions 

l&o, t) = so P(0, t) , uTI(l, t) = s, uI(1, t) for t > 0 , (25) 

where u, A, B and F are partitioned in the usual manner. We immediately 
may prove the following (see [5J for details) 

The 

Proposition 6 - There is an inner product (*, a)' on L2 with 

;I;ociated norm II.// I equivalent to the standard L2-norm 
with respect to which the operator 

L-A& 

is semibounded, i.e. there is an ti c m such that 

(Lu, u)' 5 n\iu[j2 . 

nncr product (a, 0)' of Proposition 6 is defined by 

(26) 

I 
(v, u)’ = vT G(x) u dx 

0 

1 when A is where G is a positive definite symmetric matrix (diagona 
diagonal). The matrix G is chosen so that 

S; d'il) GI'(1) S, f. d(1) G'(l) (27) 

and 

ST A'(O) G'(0) S' < n"(O) G"(0) 0 o- (28) 

where G has been partitioned corresponding to A . For non-diagonal systems, 
the matrix G may be chosen by first diagonalizing the system, choosing the 
corresponding G , and then transforming back to non-diagonal form. 

Using this G matrix, one can easily show that the exact solution of 
our differential problem satisfies the estimate 

‘b)l[dsl (29) 

where C and lw are constants (see [SJ). 
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The modified Galerkin method we propose is at each time t to seek a 

u E Sh such that 

($ 5 v>' = (Ag , V)' + (BU, V)' t (F, V)' (30) 

for all V E Sk . Here Sk is a subspace of H' 

G = I so that (m, m)' = (*, .) , the ordinary 
'2 

Note that if we choose 

L inner product, the 

method (30) is in general unstable (see [3]). 

If the inner product (v, s)' is chosen as in (26) with G satisfying 
(27) - (28), then analogously to (29) we may show (see [5]) that 

lp(t)ll' 5 eat[p(0)j[' + j: dtes) IIWll' ds 9 

i.e. the semi-discrete Galerkin method (30) is stable. Furthermore, if the 
ordinary differential equations (30) are approximately solved by the Crank- 
Nicolson method, we can prove that 

at 
llU7 ’ i e aktllUojj ’ + C e k max IIFb)ll' 

o<s<t -- 
ak -1 

where ak = ~(1 - 2) , k is the time step and U" is the approximation 

to U(kn) . 

We summarize these results in the following theorem (see [5] for details). 

Theorem 7 - The Galerkin scheme based on (30), with the inner product 
(*I 4' and matrix G chosen according to (26) - (28) is stable. 
Furthermore, the fully discrete scheme based on (30) in conjunction 
with a Crank-Nicolson method for approximating the time derivative 
is also stable. 

In [S] are also to be found results concerning the rate of convergence of both 
the semi-discrete and fully discrete schemes based on (30) . Some remarks 
about extensions of this approach to problems in two space dimensions are also 
given in [53. 

We conclude by giving two examples of the construction of the matrices 
G appearing in the inner product (26). First consider the system (1) with 
initial conditions (11) and boundary conditions 

u(0, t) = u(1, t) = 0 . (31) 

Here, the system matrix is non-diagonal so that the matrix G will be 
non-diagonal. We note that 
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A= = T-l A T 

where 

and A = 

Thus the diagonal form of our problem is 

ll* II II 5 -” at x = 0 , u = -ul at x=1 

plus initial conditions. Thus, in the notation of (26), (27) we have 

,I = g , *II = ; , so = -1 s, = -1 

so that the scalars G1 .and G1' satisfy, by (26), (27) 

G"(l) 5 3 G'(1) and 3Gr(0) -5_ G I'(o) . 

These inequalities are satisfied by 

G'T(x) = 3 and GI(x) = 1 . 

Then 

G=i(; ;)T-I= (-; -;) . 

We note that with the boundary conditions (31), 

(A B u)’ zc (A .% 
ax ’ ax 9 Gu) = 0 

so that 
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p-wll = pmll for t ’ 0 , (32) - 

i.e. the "G-energy" is conserved. 

In our second example a constant G matrix will not work to simultaneously 
satisfy (26), (27). Consider the problem 

au au 
at=% where u = (:rl) and A = (-i ,i) , 

~'(0, t) = 5 ~'~(0, t) and ulI(l, t) = uI(l, t) 

plus initial conditions. In the notation of (26) - (27), we have 

A1 = 1 3 *I1 = 10 , So = 5 and S, = 1 

so that if 

(26) - (27) require that 

10 G1'(l) 5 G1(l) and 25 G'(O) 5 10 GI'(O) (33) 

which cannot be simultaneously satisfied by constant matrix G . However, 
if we choose 

G1(x) = 8x + 2 and GI'(x) = -4x + 5 

then (33) is satisfied. Thus, we may choose 

G =(Bxo+. 2 -4xot 3. 

It !can be shown that 

(A 2 , u)' = (A au ax ' Gu) 1. 40[lu[j2 . 
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EXTRAPOLATING METEOROLOGICAL DATA FOR 
ARTILLERY APPLICATIONS 

Abel J. Blanc0 
US Army Atmospheric Sciences Laboratory 

White Sands Missile Range, NM 88002 

ABSTRACT. Preliminary results derived from a mathematical algorithm for 
calculating impact dispersion due to meteorological factors are presented. 
The report presents a comparison of three techniques for extending the maximum 
ordinate of the Artillery Computer Meteorological Message from 20 to 23 km, 
for application to projectiles traversing higher altitudes. The three 
techniques, called the default, the extrapolation, and the modified 
extrapolation (or climatological), are analyzed against data from 69 
rocketsonde flights that were conducted over White Sands Missile Range, New 
Mexico, during 1979. The measured and estimated data are used to 
ballistically simulate 552 impact displacements for a trajectory of a proposed 
rocket system. The findings show that the extrapolated meteorological 
correction yields a significant improvement over the current default method of 
using a standard meteorological message. Impact dispersion error analyses 
illustrate that a software addition to the current meteorological message 
procedure predicts all impacts within the current one probable error when the 
meteorological message is extended 3 km in altitude. 

1. INTRODUCTION. With advanced technology in artillery ballistics, 
projectile delivery at ranges greater than 50 km can be expected. Under 
certain conditions these projectiles will traverse altitudes higher than 20 km 
above ground level (AGL). The expected meteorological effects on the target 
displacement error need to be investigated for projectile traversals beyond 20 
km AtiL because the current computer meteorological message reports information 
only to 20 km AGL. This paper presents preliminary results from a comparison 
of three techniques that extend the maximum ordinate of the artillery 
meteorological message for application to projectiles traversing higher than 
the 20 km meteorological message limit. The comparison really reduces to the 
question of how well the actual meteorological profile can be estimated from 
available information at the lower altitudes. 

The techniques investigated include the current default method of using a 
standard meteorological message, the method of extrapolating available data 
from lower levels, and the method of using climatological values. The paper 
illustrates the effect of the default method in assuming zero wind and using 
temperature and density and pressure profiles representative for global 
applications. The method of extrapolating wind, temperature, and density and 
pressure provided the smallest expected (meteorological) impact displacement 
for the sample considered. For extrapolations extended up to 3 km beyond the 
20 km current maximum altitude, the extrapolated values proved to be good 
estimates of the actual ballistic parameter values effecting the projectile 
impac:t. The climatological method which required adjusted corrections from 
available information at the lower altitudes also showed a significant 
improvement over the default method. The meteorological impact errors are 
smaller than those allowed from the default method but larger than those 
allowed from the extrapolated method. Climatological input is also 
required. The method is included in this study because it may prove 
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advantageous when extrapolated values are needed at ranges which cause the 
ballistic trajectory to exceed the extended 3 km height. 

The development of the extended meteorological message techniques and 
ballistic simulation programs was tested by using a single rocket 
configuration. The selected trajectory reaches 65 km range and traverses 23 
km AGL in altitude. Data needed to describe this trajectory (for example, 
ballistic wind and temperature and density coefficients including weighting 
factors and unit effects) were obtained from the Project Manager of the 
Multiple Launched Rocket Systems (MLRS).* To attain this altitude, the 
projectile had to be launched at 3048 m above sea level; consequently, the 
meteorological extending techniques could be evaluated at the 23 to 26 km 
level of the lower stratosphere. As is the case for the artillery techniques 
for aiming a gun (ref 11 on a target, this paper uses the launcher surface as 
the zero level. 

2. EXTENDING METEOROLOGICAL APPLICATION. Available techniques for 
extending the meteorologlcaf data for projectiles reaching higher than 20 km 
AGL vary from hardware and software or a combination of these. In this paper 
only software techniques will be discussed. The rocketsonde data are assumed 
to represent the actual atmospheric parameters; then the extendinq technique 
comparison reduces to how well the actual meteorological profile can be 
estimated from available information below the 20 km AGL limit. Also, the 
implication is that if these measured meteorological data are used for aiming 
an artillery piece, then the displacement due to meteorology on the target is 
zero. When the true meteorological data are known, the simulated fire 
provides a hit every time. 

The first technique examined--one which the Artillery currently uses--will 
be called the default method. Whenever a meteorological message or 
climatological tables are unavailable, the artillery pieces are aimed by using 
a meteorological message which contains standard temperature and pressure and 
density data. The standard wind is a constant zero speed for all (line 
numbers) layers. In cases where the meteorological messages are unavailable 
or are not complete to the 20 km AGL limit, the current procedure defaults to 
the standard meteorological conditions for the missing data. 

The second technique is extrapolation. The missing data are defined from 
the last available layer and are used to estimate the remainder of the 
meteorological message for application up to the maximum ordinate of the 
artillery projectiles. A persistent wind is used which is the wind direction 
and windspeed at the 20 km layer held constant up to the apogee of the 
trajectory. The extended values for temperature are computed by adding the 
standard gradient of the temperature default method to the last known 
temperature value. Finally, for the last parameters, the hydrostatic 
extrapolation of the density and pressure is computed b,y using the 
extrapolated temperature values and available density and pressure value. The 
detailed extrapolation, assuming the hydrostatic equation and the perfect gas 
law, yields the following expressions: 

*Personal communication between Mr. Henry Oldham, Missile Command, and Dr. 
Donald M. Swingle, Atmospheric Sciences Laboratory, January-February 1980 
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Gravity 

Air molecular weight 

Gas constant 

Geopotential 1 ayer 

Extended temperature 

Lapse rate 

Extended density 

= 9.80665 m s -2 
go 

M = 28.966 g mol -1 

R = 8314.32 J (OK)-' mol-' 

where I = 1, 2, 3 

T(I) = T, + T&I) - TS 
0 

where T, = 20 km value 
T, = standard temperature 

TS 
= standard temperature at 20 km 

T: 0C 

L(1) = [T(I) - T,ll~ H(I) 
I* (oKI km-' 

[T, f 273.161 
(1 + g”) K 

p(I) = PO IT(I) + z/3.16] 

where po = 20 km value 

p + g/m3 

The extrapolated values for the layers of 1 km thickness are extended by 
iterating the above relationships with respect to I until the maximum altitude 
desired is reached. 

The third technique is defined by a modification to the extrapolated 
technique. This method uses climatological data to estimate values of the 
unavailable data. The difference between the data at the 20 km AGL layer and 
the data of the climatological values for the time of year and location of 
actual meteorological application is used to adjust the climatological 
estimate. Even though the Field Artillery does not have climatological tables 
available for these extended heights, this technique was included to develop 
the concept of translating the meteorological trend from climatological or 
fallout meteorological messages to continue the extended meteorological 
message from the 20 km AGL values. 

The US Army Field Artillery needs an estimate of the meteorological impact 
displacement for proposed high trajectory weapons. Therefore, the emphasis of 
this paper is to estimate the ballistic meteorological effects and not the 
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actual value of the missing meteorological data at the extended altitudes. 
The three methods for extending meteorological data above the altitude 
actually measured are then transformed into a departure from a selected 
meteorological standard, and the error in failing to estimate the ballistic 
atmospheric effect will be illustrated by a displacement about the target. In 
summary, figure 1 illustrates the percent departures, plotted as 1.1, from the 
United States Standard Atmosphere (USSA) 1962 (ref 2) for 16 rocketsonde data 
flights collected during January 1979. This is the standard atmosphere the 
Ballistic Research Laboratory uses for trajectory computations Iref 3). The 
departures for the month's climatological data are also plotted 1x1. 
Extending technique 1 uses the default value of the USSA (no departure). 
Technique 2 uses the wind components measured at the 20 km layer and also uses 
this value at the 21, 22, and 23 km layers. The extended values for the 
departure temperatures and density and pressure values are the normalized 
deviations between the extended values and corresponding values of the USSA. 
Technique 3 adds the climatological data with respect to the corresponding 
heights and the difference between the last available data and the climatology 
at 20 km to compute the data at the missing layers. By superimposing the 
climatological departure value (x) on a particular value of the 20 km level, 
one computes the difference that will be arithmetically added to the remaining 
climatological profile levels. 

BALLISTIC SIMULATION. 
(rea:;zed by three techniques) was reviewed to evaluate the extending 

A comparison of the impact dispersions 

techniques and to gain some insight on the effect of the extended 
meteorological message. This report assumes that the actual meteorology is 
defined as the measured parameters deduced from the rocketsonde data (ref 
4). These data were then represented in the Artillery computer meteorological 
message format (ref 5) with new layers of 1 km thickness added to complete an 
extended message to 23 km AGL. The investigated techniques used measured data 
below 20 km AGL and extrapolated or climatological data for each layer up to 
the maximum ordinate of 23 km AGL. Using the same data, each extending method 
yields a dispersion about an assumed target. The meteorological technique 
that yields the smallest dispersion about the simulated target is selected as 
the best of those tested. 

The corresponding dispersions are defined as the group of displacements 
calculated by the ballistic weighting technique. Here an algorithm is 
introduced that utilizes the extended messages and ballistically computes a 
displacement about a fixed target. This algorithm can be used to compute the 
deviation between the extended and a standard (USSA) method. This deviation 
is then normalized with respect to the standard (IJSSA) condition. The 
deviation is calculated for the averaged parameter (wind, temperature, density 
and pressure) P(Z) at each layer through 23 km. Finally, in the ballistic 
technique, the normalized parameter is multiplied by the weighted response 
function [SW'(Z)]. This function contains the ballistic characteristics of 
the high trajectory weapon system. The required information is the weighting 
factors and the unit effect for each of the meteorological parameters at the 
identical layer structure of the extended messages under evaluation. The sum 
of these products through the maximum altitude of the proposed trajectory 
yields the effective displacement (0) from the standard conditions. In 
reality, by knowing this displacement, an artilleryman can compensate for the 
meteorological deviations from the standard by appropriately adjusting his 
weapon aim and firing for effect. This displacement is formulated as follows: 
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Figure 1. Percent departures from the 1962 United States Standard Atmosphere 
16 Rocketsonde data flights. 
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D={ dw’ (Z) dZ , 
zO 

where 6 = unit effect; w'(Z) = ballistic weighting; dZ is the increment of 
height; and the parameter P(Z) is temperature, density, or wind. In the case 
of wind there is no standard, and the P(Z) is not normalized. 

A sample of rocketsonde flights containing different atmospheric 
conditions yields a set of impact displacements describing the dispersion of 
the analyzed weapon system. This dispersion is mathematically represented 
with a bias and a variance for each component (cross and range) about the 
target. The conventional artillery practice is to describe the dispersion of 
a we,apon in terms of a circular error probable (CEP) (ref 1). This criterion 
is defined as the circular radius of the smallest circle about the target that 
contains one-half of the total impact displacements. This procedure is used 
even though the actual dispersion of a gun is elliptical. In demonstrating 
the differences between the evaluated extending techniques, this report uses 
elliptical probable error rather than the CEP. There are cases when a small 
dispersion is biased too far from the target, thereby yielding artillery fire 
ineffective. One is cautioned that when converting to CEP about the target 
the comparison of results will produce a different interpretation of the 
evaluated meteorological messages. The bias due to meteorological parameters 
is a major contributor to the impact displacement. In practice, through 
observed fire the Fire Direction Center would correct for this bias which is 
caused from the unavailability of a meteorological message update or lack of a 
procedure to obtain data above 20 km AGL. 

The results show that the dispersion is a function of the atmospheric 
condition. Wind, temperature, and density and pressure effect the range 
impact displacement, while only wind effects the cross component (ref 5). 
Since the azimuth of fire determines the wind bias, calculation of a 
mathematical composite of eight single azimuth (Qi) dispersions was considered 
to be more appropriate. The weapon system was therefore launched at targets 
on a circle of radius of 65 km at increments of 45 degrees. Figure 2 
illustrates the one-probable-error dispersions produced from 16 rocketsonde 
flights collected during the same month and at the same location. All impacts 
were computed without an extended meteorological correction between 20 to 23 
km AGL. The effectiveness of fire is different for the particular target. 
This paper groups the 128 impact displacements and defines the composite 
dispersion plotted in the center of figure 2. Notice that the range and cross 
bias due to the wind are cancelled in the composite dispersion. This 
cancellation would also be true for a single azimuth target if the sample 
rocketsonde data included winds from all directions. The temperature and 
density and pressure bias are not cancelled because of the nature of the 
ballistic computation. If the sample contained data with the temperature and 
density and pressure above and below the standard, then the bias would be 
effected in the composite. The next section will present results for the 
rocketsonde data collected during different months illustrating the variation 
of temperature and density and pressure effects. The composite results can be 
interpreted as results of a large sample containing 128 rocketsonde flights 
collected on the same month. With the inclusion of several months of data 
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GRID=50 M 

Figure 2. One probable error elliptical dispersions from 16 impact displace- 
ments computed without extended meteorological correction between 
24 and 26 km above mean sea level. The weapon system is fired at 
targets on a circle of radius 65 km at 45-degree increments. The 
center dispersion is the mathematical composite of the 128 dis- 
placements. 
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collected at one location and following the outlined procedure, the final 
results can be interpreted for general application. 

For each rocketsonde flight, equation (1) is applied to the cross (DC) and 
range (DR) components as follows: 

Z 
DC (0 ., 2) = "C c 

iJ 
w;'z'wc (0 ., z, ; 

ZO iJ (2) 

Z Z AT. Z 
DR (9 ., z) = "R 1 W'(t)vR (8 ., z) +&T if w;(z) ++ dp ' w;(Z) 

iJ z R 0 iJ ZO S ZO 

The cross component does not contain the temperature (T) and density (P) 
effects as illustrated in equation (3). The displacement statistics for the 
error due to the unextended meteorological message are computed as follows: 

8 
Bias = i c 

i j 
Di(ej, Z)/8n ; 

n 8 9 rn 8 19 

Genera 
there are 
each month 

Variance = 
8n i 5 

L c c 
Di(ej. Z) - i j Di(ej, Z 

8n18n - 

lizing the results, consider that for each li) rocketsonde fl 
(j = 8) azimuths providing a total of 8n impact displacements 

. 

ight 
for 

(4) 

(5) 

TECHNIQUE COMPARISON. Measurements from 69 rocketsonde data flights 
collz;ted at White Sands Missile Range (WSMR) New Mexico, during January 
through June 1979 were used to compute the meteohological displacement for the 
high trajectory projectile at the simulated 65 km range target. Since the 
evaluation of the three proposed extending techniques is based on the 
comparison of the dispersion from the simulated displacements, the formula in 
equation (1) is computed for heights of 20 through 23 km AGL. These 
computations represent the meteorological effects which are not compensated 
for when the selected projectile is fired. However, use of extending 
meteorological data techniques will provide meteorological compensation for 
the missing data and should improve the accuracy. 

The meteorological effect from surface through 20 km AGL is not computed 
in this report since the first 20 km of data are the same for each of the 
three extended meteorological messages. The extended meteorological message 
that best estimates the rocketsonde data will yield the smallest dispersion 
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about the target at 65 km range. Only the displacement due to meteorology 
above 20 km is analyzed. The larges * e smalles -. 1s 1.9 m. Note that this study assumes that there is no time and snace 
difference between the point of-measurement and application. For an actual 
firing, these errors are further increased by a factor determined from the 
time and space variability. 

The results indicate that the presently used default values for the 
meteorological message above 20 km AGL yield large displacement variations 
that the Field Artillery should be correcting. 

The miss distance is computed for an extrapolation defined from the last 
available data estimating the missing three meteorological layers. Another 
miss distance computed is that represented by persistent meteorology modified 
by climatological gradients. The following interpretation can be made: If 
the high trajectory projectile were fired on a cross-road target located 65 km 
in range on 4 January 1979, 1900 hours, using the current artillery default 
method, it would miss the target by 164 m. The smallest miss for the month is 
50 m (17 January) and this assumes that there are no other time and space 
associated meteorological contributions. This unacceptable error can be 
improved significantly by any of the proposed extending techniques. By the 
simple extrapolated technique, the 164-m miss is reduced to 37 m and the 50-m 
miss to 17 m. A statistical extrapolation technique may provide further 
improvement. This improvement is expected from the better estimate of the 
wind and density effect. The temperature related errors are small because the 
variations at 23 to 26 km (above mean sea level) were small; and when 
normalized with the standard (in degrees Kelvin), the ballistic effect is a 
minimum. 

In this study, a procedure is automated to compute the expected 
meteorological errors associated with the high trajectory profile. The 
algorithm compares the statistics from the evaluated techniques. In summary, 
the no-correction or the default displacement is computed first by setting J = 
0. This error is the total effect of the extended layers as computed from the 
actual rocketsonde data. For each flight, this displacement is saved for 
comparison with the other evaluated techniques. The difference and square of 
difference are saved to compute statistics leading to description of the one 
probable error, elliptical dispersion. In detail the miss distance is 
defined, using no-correction or default standard, as JO (CO, RO). E(C1, Rl) 
is the miss distance computed by using the extrapolated correction. The miss 
distance provided from the climatology method is labled as E(C2, R2). The 
differences Jl and 52, where 

Jl = E(C1, Rl) - JO(C0, RO), 
(6) 

52 = E(C2, R2) - JO(C0, RO), 

provide the comparative values for the evaluated methods. A difference equal 
to zero indicates that the extended method has fully compensated for the 
actual extended values. The value of the difference is the error that remains 
uncompensated, By grouping the corresponding displacements, one can then 
compare the evaluated technique dispersions. 
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Table 1 presents statistics partitioned into the January, February, March, 
April, May, and June subsets of 16, 13, 12, 12, 8, and 8 rocketsonde data 
flights. An analysis of the total sample shows that there is a 64 percent 
improvement afforded by the extrapolated method over the current default 
method. Figure 3 presents a graphic demonstration of improved accuracy. 

To assure the reader that this sample provides representative results, a 
test of significance was performed. The chi square distribution test involves 
the comparison of the computed displacements versus the expected 
displacements. A desired risk is selected, and a test statistic is compared 
with the chi square table value (ref 6). This test statistic is defined as 
follows: 

where Oi is the observed frequency of occurrence of the computed 
displacements, El is the expected frequency of displacement for the different 
technique, and x is the computed chi square value. 

For ease in organizing the results, a contingency table is arranged in 
table 2. The expected number of less than 30 m displacement is computed as 
follows: If there were no difference in the effect of the three techniques, 
the fraction of displacement with better than 30 m would be expected to be the 
same ratio as the totals in the last column of table 2. The number of the 
sample displacements is multiplied by this ratio to define the expected 
results. The computed value of x2 is greater than 34. Since the calculated 
value exceeds the table value (lo), the conclusion is that the data indicate a 
difference from the expected value with a risk less than 0.005. 

5. CONCLUSIONS. There is a large variation in the displacement effect 
due to the measured rocketsonde data collected at 23 through 26 km above mean 
sea level. For this theoretical study, the largest meteorological 
displacement in the sample size of 69 is 164 m and the smallest is 19 m. Note 
that for an actual firing these errors are further increased by a factor 
determined from the time and space differences between the point of 
measurement and application of the meteorological data. Under the assumption 
of no time and space variability, extrapolated meteorological data above 20 km 
AGL yielded a significant improvement over the current default method of using 
a standard meteorological message. The total rms 78-m displacement error was 
reduced to 28 m. The comparison reduces to how well the actual meteorological 
profile can be estimated from available information. If the estimate is poor, 
then actual measurements become important. Preliminary results for the high 
trajectory projectile considered indicate that a software addition to the 
current message procedure may be sufficient. This indication appears to be 
true when the meteorological message is extended 3 km in altitude for 
compensating meteorological effects on a 65 km range trajectory. 
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ONE PROBgBLE ERROR ELLIPSES 

JANUARY 
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DEFAULT 
EXTRAPOLATED ----I 
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RANGE(m) 

GRID=20m 
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: a* * * * . * . ; * : 

\ I 
/ 

h 6 
MAY JUNE 

Figure 3. Graphic display of improved one probable error afforded by the 
extrapolated and climatological messages. 
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TABLE 1. COMPARISON OF RMS MISS FOR THREE EXTRAPOLATED MET MESSAGES 
USED AS INPUT FOR SIMULATED TRAJECTORY 

(ii2 + .2)1’2 m in meters 

Month Jan Feb Mar Apr May Jun Total 

Sample size 16 13 12 12 8 8 69 

Rocketsonde Actual impact 

Techniques (20-23 km) 

Default standard 106 55 58 64 74 89 78 

Extrapolated 36 25 30 27 12 20 28 

Climatology 43 39 46 27 18 27 37 

TABLE 2. CONTINGENCY TABLE BASED ON RESULTS OF TEST OF 
THREE EXTENDING METEOROLOGICAL TECHNIQUES 

Technique J = 0 1 2 Total 

Total displacement 69 69 69 207 

< 30 m criteria - 5 50 37 92 

Expected improvement 30.7 30.7 30.7 
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The next report to the United States Field Artillery School will present 
the status on the accuracy and dispersion effects on target impact 
displacement provided by using statistical extrapolation techniques. The 
improvement expected originates from bounded physical estimates of density and 
temperature effects and modified persistent winds with expected wind gradient 
effects. Instead of climatology, the last available fallout message can be 
used to provide the trend of the missing data. A more representative case of 
a high trajectory traversing to the middle stratosphere will be 
investigated. Under this condition, the default method of using the standard 
meteorological message is expected to yield increasingly larger errors. 

6, SUMMARY. The United States Army Field Artillery School needs to know 
the expected meteorological impact displacement for new weapons traversing the 
atmosphere to altitudes where measurements are not available from the 
meteorological field units. The preliminary status is that simple persistence 
for extrapolating the wind, extending temperature by adding the standard 
gradient to the last known temperature value, and using the hydrostatic 
extrapolation of density and pressure significantly reduces the meteorological 
impact error. The improvement is summarized as allowing all impacts to locate 
within the current one probable error dispersion. A software addition to the 
current meteorological message procedure reduces the error when the message is 
extended 3 km in altitude. 
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COMPUTER-AIDED SOLUTION OF THE BACTERIAL SURVIVAL EQUATIONS 

IN MICROBIOLOGY II. - EIGENVALUES FOR HEAT DIFFUSION EQUATION FOR 

FINITE CYLINDERS AND PLATES BY COMPUTER 

Chia Ping Wang and Ari Brynjolfsson 

US Army Natick Research and Development Laboratories 
Natick, Massachusetts 01760 

ABSTRACT 

The temperature distribution in a specimen during heating and cooling 
is determined by the heat diffusion equation with appropriate boundary 
conditions. In convective heating, the eigenvalues for the heat diffusion 
equation, for cylinders and plates, are given by the roots of either or 
both of the following equations: 

Xn J, (xn) = v l Jo (Xn) 

C COS Yj = Yj sin yj 

The present paper describes the solution of these dquations with com- 
puter to their 36th roots for parameter v extending from 0 to 20,000, and 
C, from 0 to 7,000, with rapid convergence. The parameter 9 corresponds 
to the "conductive Nusselt number", or the Biot number, in convective 
heating. 

The very rapid and accurate calculations of the elgenvalues for the 
very wide ranges of v and C covered, have great applicability in many 
fields of thermal engineering. In the present case, these very rapid 
calculations have made the evaluation of the microbial kill practicable 
for food samples of various sizes under different heating conditions. 
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COMPUTER-AIDED SOLUTION OF THE BACTERIAL SURVIVAL EQUATIONS 
IN MICROBIOLOGY II. - EIGENVALUES FOR HEAT DIFFUSION EQUATION FOR 

FINITE-CYLINDERS AND PLATES BY COMPUTER 

Chia Ping Wang and Ari Brynjolfsson 

I. INTRODUCTION 

The task of finding changes with time of the heat distribution in 

samples heated from outside is an important engineering problem in the 

industry. It is important in the thermal food canning industry, it is 

important in the nuclear power generation plants and many other fields. 

The thermal diffusion equation, with given boundary condition, can be 

solved and the results are usually reported in tables. Graphical methods 

are then used to interpolate and extrapolate the tabulated values. When 

the effect of the time temperature relationship on different systems is 

to be estimated, the calculations become very tedious and time-consuming. 

For instance, when the time temperature relation is to be used for 

estimating the microbial kill in the canning industry, the standard 

procedures are very tedious, and for all practical purposes, make study 

of the effect of small variation in the different experimental parameters 

too difficult to estimate accurately. In previous papers [I,3,4] we 

have shown methods for computer calculation of the diffusion equation and 

we have shown, as an example, how these could be used directly to calculate 

the microbial kill in the canning industry, We now report on a method 

which shortens the computer time 'for these calculations from one hour 

to one minute for each sample, and stfll retains high degree of accuracy. 

II. BASIC EQUATIONS 

The temperature distributfon T(x,y,z,t) in a specimen during heating 

and cooling of its outer surface is determined by the heat diffusion equation 

% 
= K v2T (1) 

with appropriate boundary conditions. In -paper I [ 13, it was shown 
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that for an infinitely long cylinder in convective heating, the boundary 

condition is given by the equation 

-ae= h 
ar 

TO, at r = a (2) 

where 0 = T - Th, and Th is the heating temperature, 

h = coefficient of heat transfer at the surface 

A = thermal conductivity of the cylinder material 

a = radius of the cylinder 

r = radius vector of the cylindrical coordinates used. 

Eqs. (1) and (2) lead to 

X ,  Ji(xn) = ia l Jo (x,.,1 
x 

or X, J,(Xn) = v Jo (xn) 
(3) 

where (h/h) a = U, and Jo and 3, are the Bessel functions of order zero and one 

respectively. The eigenvalues for Eq. (l), with the boundary condition Eq. (2) 

are 

?I = xn/a (4) 

Thus, the eigenvalues in this case are the roots of Eq. (3) divided by 

the radius a. 

In Eq. (3), 

pa=, 

is the "conduction Nusselt number" or the Biot number [2]. 

(5) 

We note that h/h in the constant v comes from the boundary condition 

Eq. (2) and includes the effects of all surface heat resistances and surface 

radiation exchanges. 

With these notations, the temperature 8 = T - Th is obtained by 

solving the heat diffusion equation. For ei = Tj - Th where Ti is the 
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initial temperature of the cylinder, we get [l, 31: 

Jot anr) -Ka n 2t 
0 5 2ej 1 e (6) 

ncl xn[(xn/v12 + 11 : Jl(Xn) 

which gives the temperature e = T - Th for any point at a distance r from 

the axis of the infinite cylinder. 

We will then consider a finite cylinder of half-length a. In 

addition to the boundary conditjon Eq. (2) for the curved surface, we 

have the following boundary conditions at the ends perpendicular to the 

2 axis [1,4,5J 

+!!!.+he=Oatt 
-a2 X 

=tg (7) 

The general solution of Eq. (I), with the boundary conditions, 

Eqs. (2) and (7), can be obtained by the usual technique of separation of 

variables [I] and [4). The conditions, Eq. (7) lead to: 

F COS Ajt - Ajl! sin Ajt = 0 
(8) 

or Yj sin Yj = C COS Yj 

where C = halA (9) 

is a constant corresponding to the conduction Nusselt number v for the 

curved surface, and 

ki = Yj/a (10) 

are the eigenvalues of the separated t equation of the heat diffusion 

equation. 

The methods for solving the heat diffusion equation (1) in case of 

finite cylinder can be applied directly to solve heat distribution in 

samples having other forms. For an inffnite plate of half-thjckness R 

along the t direction, the eigenvalues are again the Xj of Eq. (8). For a 
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rectangular parallelepipeds a we have three separate sets of X-~'S for the 

three coordinates x,y and z, which have to be calculated separately. 

In Section III below, we give a method to solve Eq. (3) to its 

36th root by computer,for values of v extending from 0 to 20,000,with 

rapid convergence. In Section IV, we used a similar method to solve Eq.. (8) 

to its 36th root by computer for values of C extending from 0 to 7,000. 

The computation time to their 36th roots for each value of v or 

UNIVAC 1106 is about 1 to 2 seconds depending on the number of 

III. SOLUTION OF x,J+x,) = I) l Jo(xn) 

We rewrite Eq. (3) as 

f(x) = x l J&x) - v ’ J,(x) = 0 

C on 

iterations. 

(11) 
and use Newton-Raphson's method of iteration [6] to find the successive 

roots of f(x). In order to carry out such calculation, one suitable 

approximate value of x must be assigned to each root. This is accompljshed 

by observing the asymptotic expreSSions for J,(X) and J,(X): 

J,(x) + 'OS (x - 'd4) 
(12) 

J$) + sin (x - n/4) 

if-- 

(13) 
fX 

From Eqs. (12) and (13) we obtain the following asymptotic expression 

for Eq. (11). 

x tan (x - ;' - v = 0 

Let us introduce 6 such that 

(lla) 

X =na+h+6 
4 

(14) 
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Eq. (lla) becomes 

(nn f JL 4 f 6) l tan 6 = v or tan 6 = ' (15) 
na + =+6 r 

which for large x or n can be approximated by 

6% ’ nn + 6~ 

where we have set 

(16) 

++6=$77 (17) 

From Eq.(14) x5 ntr + g+ V 
nn * BH (18) 

It was found by actual computer calculation that Xn given by Eq. (18) 

can be used as the initial value in the iteration, not only for obtaining the 

first root x0 with the assigned accuracy with rapfd convergence, but also for 

obtaining all the first 36 roots within the assigned accuracy with equally 

rapid convergence. Moreover, the same initial value in the iteration could 

be used to calculate the' 36 roots for a large range of v-values. We thus 

express the parameter 8 in terms of the first root x0 using Eq. (18) 

B” u 

(x0 - $,n 
and treat x0 as a parameter after substjtuting Eq. (19) into Eq. (16) 

6% 

For the initial values of x we then use: 

x=nn+lL+ V 
4 na + v/(x,-+/4) 

forthe first 36 roots, for the given range 

(19) 

(20) 

(21) 

of v. 
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For the different ranges of V, we let X0 assume different values 

(as a parameter), and obtain thus the first 36 roots of x for v extending 

from 0 to 20,000 with rapid convergences as mentioned before. 

Table I shows, as examples, the 36 roots so computed for v = 5, 

100 and 20,000. The values of v are given in the upper left corner of 

each data block. The error in the calculation is less than 5~10~~ for 

v < 100, and 10m4 for lo* < v ~10~. -. 

IV. SOLUTION OF yj sin yi = C cos yi 

We rewrite Eq. (8) as 

f(x) = x tan x -C = 0 

For the (n+l)th root we write 

X =n~r+d 

then tan x = tan d 

and (nlr + 6) tan 6 = C 

tan 6 = nrrC+ d 

which for large n approaches 

(22) 

(23) 

(24) 

(25) 

The successive roots will be given by different values of n and 6: 

X =nn+& 

Using Newton-Raphson's method of iteration, we need only an approxi- 

mate initial value of x. This, in turn, means that we only need an approximate 

value for d in the denominator of Eqs, (25) or (26). Obviously, d is less 

than n/2. We thus write for the approximate value of 6 as 

6% c (27) 
nlr + 871 

where B is a parameter which we introduce and whose values are less than l/2. 
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The approximate value of the first root x0 is 

C x0= 6 5 - 
Bn 

and we express Eq. (27) as 

65 c 
nn + J- 

X0 

and treat X~ in Eq. (29) as a parameter instead of 8. 

The initial value of x is given by Eq. (23) 

X 
C 

= lhr + nH + c/x, 

(28) 

(29) 

(23) 

using the approximate value of 6 given by Eq. (29). 

As in Section III, it is found by actual computer calculations that 

for a given range of values of C, a single value of x0 for Eq. (29) is 

sufficient to compute all the first 36 roots of Eq. (22) with rapid con- 

vergence. The range of the values of C tested extends from 0 to 7000. 

Table II shows, as examples, the 36 roots so computed for C = 5, 100 

and 7000. The values of C are given in the upper left corner of each data 

block. The error in the calculation is set = 10m6# though the roots are 

printed out only to the 4th decimal place. 

v. CONCLUDING REMARKS 

The computer programs developed here make use of the NEWTIT sub- 

routine for Newton-Raphson's method of iteration, and the BSSL subroutine 

for the calculation of the Bessel functfons Jo and Jl. These subroutines, 

1n the present case, are already in the UNIVAC system. Self-checking that 

the roots calculated fall in the correct quadrant in each iteration is also 

provided in the programs. 
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Gefore concluding, we give the temperature distribution so calculated 

for a finite cylinder in Tables 111 and IV. This is expressed in terms of 

the "relative temperature difference" [5] 

T - Th 
y=m 

Fig. 1 is the 3 dimensional plot of $ for such a cylinder given in Tables 

III and IV. 
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TABLE I. THE FIRST 36 ROOTS,xn,OF 

Xn Jl(xn) = v* Johd 

COMPUTED FOR u=5,100, AND 20,000 

z.3uo5 5.4652 8.5678 11.6747 
14.7834 17.8931 21.0036 24.1147 
L7r2264 30.3387 33.4515 36.5649 
39.0796 42.7936 45.9089 49.0248 
52.1414 55.2586 58.3764 61.4949 
b4.bl4U 67.7338 70.8542 73.9752 
77.096~ 80.2190 83.34113 86.4652 
bY.5891 92.7136 95.8386 98e9641 

lU2.0901 105.2166 108.3436 lll.4710 

NU z r’u000.00c)0 

2.4047 5.51'38 8.6533 11.7909 
14.9302 18.0702 21.2106 24.3513 
d-7.4921 30.6331 33.774i 36.9153 
4c)*l)S64 43.1976 46.3389 49.4801 
kd.b214 55.7627 58.9040 62.0454 
bb.ld67 68.3281 71.4694 74.6108 
7‘1.7521 80.d935 84.0349 87.1763 
90.3177 93.4590 96.6004 99.7418 

1Od.iM32 106.0246 109.1660 1.12.3074 

4.7131 7.6177 10.6223 
16.7630 19rbOYO 22.9754 
29.2168 32.3434 35.4726 
41.7365 44.8704 48.0054 
54.2775 57.4145 60.5519 
66.8279 69.9464 73.1052 
79.3834 82.5228 85.6623 
91.9418 95.0818 98.2218 

104.5022 107.6425 11017829 
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TABLE II. THE FIRST 36 ROOTS, Xn, OF 

Xn sin Xn =C* COS Xn 

COMPUTED FOR C=5,100,AND 7,000 

l.S7Ob 
14.1351 
Lo.6997 
39.2643 
51.828Y 
b4.3935 
7b.Ykli30 
&9.5226 

lU2,Uti72 

4.U336 
lG.Ulb7 
28r44b3 
40.96;i2 
53.bO1r3 
66.0440 
78.6033 
Y1.1610 

luJ.'12U7 

Q.bbti# 7.7764 10.8871 
17.1093 20.2208 23.3327 
29.5577 32.6709 35.7847 
42.U13A 45.1292 48.2452 
54.4790 57eS969 60.7154 
66.Y543 70.0746 73.1956 
79.4393 82.5620 135.6053 
91.9336 95rOSAS 9d.1839 

104.4363 107.5631 110.6904 

4.7117 
17.2763 
29.ti409 
42.LtO54 
54.97uo 
67.5344 
80.U992 
92.0037 

105.2283 

6.9d9b 9.8928 
19.1055 22.2126 
31.5730 34.7006 
44.0952 47.2294 
56.6367 59.7737 
69.1072 72.3257 
81e7425 04.8818 
94.3OOb 97.4406 

106.B609 110.0012 

7.8529 10.9940 
20.4174 23.5586 
32.9ti20 36.1232 
45.5466 48.6077 
5fI.1112 61.2523 
70.6757 73.8169 
83.24U5 86.3815 
95.bO49 9H.9460 

lUH.Sb95 111.5106 
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ALGORITHMS FOR SPARSE, SYMMETRIC, DEFINITE 
QUADRATIC X-MATRIX EIGENPROBLEMS 

David S. Scott and Robert C. Ward 
Computer Sciences Division 

Union Carbide Corporation - Nuclear Division 
Oak Ridge, Tennessee 37830 

ABSTRACT. Methods are presented for computing eigenpairs of the 
quadratic X-matrix, MX2 f CX + K, where M, C, and K are larqe and 
sparse, and have special symmetry-type properties. These properties 
are sufficient to insure that all the eiqenvalues are real and that 
theory analogous to the standard symmetric eigenproblem exists. The 
methods employ some standard techniques such as partial tri-diagonal- 
ization via the Lanczos Method and subsequent eigenpair calculation, 
shift-and-invert strategy and subspace iteration. The methods also 
employ some new techniques such as Rayleigh-Ritz quadratic roots and 

~ the inertia of symmetric, definite, quadratic X-matrices. 

1. INTRODUCTION. Quadratic h-matrix problems consist of deter- 
mining scalars X, called eiqenvalues, and corresponding n x 1 nonzero 
vectors x, called eigenvectors, such that the equation 

(MX' + CX + K)x = 0 (1) 

is satisfied, where M, C, and K are given nxn matrices. In addition, 
we assume that M, C, and K are symmetric or Hermitian, M is definite 
(either positive or negative definite), and the eiqenvalues of (1) are 
real and can be divided into two dis,ioint sets P and S with the follow- 
ing properties: 

Pl) If Ai E P and X. E S, then Xi > X.. 
J J 

P2) If xi c P (S) and Xi is its associated eigenvector, then Xi 

is the larger (smaller) root of the quadratic equation 

(XT Mxi) X2 + (x; C xi) X f (x; K xi) = 0. 

The eigenvalues in P will be called primary eigenvalues, and those in S 
will be called secondary. Their eiqenvectors will be referenced 
similarly. 

Problems of this nature occur in several application areas; we 
will briefly discuss two of them. Lancaster [2] states that the deter- 
mination of sinusoidal solutions to the equations of motion for 
vibrating systems which are heavily damped results in such a quadratic 
x-matrix problem. In these overdamped systems M, C, and K are 
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symmetr 
and the 

c, M and C are positive definite, K is non-neqative definite, 
overdamp inq condition 

(Y*'~Y)~ - ~(Y*MY)(Y*KY) > 0 

is sati Tied for all vectors y f 0. Proof that the eigenvalues for 
overdamped systems are all real and obey properties Pl and P2 above can 
be found in Lancaster [2]. Problem (1) also arises in the dynamic 
analysis of rotating structures where the gyroscopic effects cannot be 
ignored. (See Wildheim [8] and Lancaster [2-j.) In qyroscopic systems 
M, C, and K are symmetric (Hermitian), M is neqative definite, and K is 
positive definite. One can determine (Scott and Ward [7]) that all the 
eiqenvalues are real, that P and S are the positive and negative 
eigenvalues, respectively, and that properties Pl and P2 are satisfied. 
In both overdamped and qyroscopic systems, the M matrix is usually 
called the mass matrix and K the stiffness matrix. Thus, we have 
chosen the notation given in (I) rather than the more standard mathe- 
matical notation using A, B, and C for the matrices. 

In this paper we present various methods for computinq eiqenpairs 
of these quadratic X-matrices when M, C, and K are also large and 
sparse. Due to the simplicity of the properties of gyroscopic systems, 
our model problem for presentation of the methods will be from this 
application area. That is, we will discuss algorithms for computing 
eigenpairs of equation (1) where M, C, and K are large, sparse, and 
symmetric, M is negative definite, and K is positive definite. 

In Section 2 we discuss the approach of transforming the quadratic 
problem into a linear one. Some methods based on the factorization of 
a nxn matrix are presented in Section 3 with methods not requiring any 
factorization presented in Section 4. We close the paper by summa- 
rizing our results, 

2. LINEARIZATION. 
eigenpair (X, x) satisf 
also satisfies the 2n x 

ies the quadrat 
2n linear prob 

It may be immediately verified that the 
ic problem (1) if and only if it 
lem. 

X [I AX 
=o, (2) 

which we denote as (A-hB)z = 0. Bv the hypotheses on M, C, and K, A 
and 8 are symmetric and 8 is positive definite. Thus from well known 
linear theory, there are 2n real eigenvalues. Applying the Cauchy 
interlace theorem to the nxn zero block of A leads to the conclusion 
that exactly n of the eigenvalues are positive and n are neqative. 
Finally, the eigenvectors of the linear problem are B orthoqonal so 
that if (A.,, x1) and (x,, x2) are different eiqenpairs, then 

(x; K x2) - A, A, (x; M xa) = 0. (3) 
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Unfortunately, equation (3) involves both X1 and X, and does not lead 
to a useful deflation technique. 

Sparse linear eigenvalue problems have been studied in some detail 
and good solution techniques exist. However, a qeneral linear solver 
may not be the best choice for solving a quadratic problem in that the 
linear problem has dimension 2n even thouqh the oriqinal problem has 
dimension n and no advantage will be taken of the special structure of 
A and B. Also, A-UB is not banded even if M, C, and K are so that 
factoring A-&, which is an integral part of most linear solvers, will 
require special care to preserve sparsity. 

For these reasons we will investigate solution techniques which 
take advantage of the underlyinq quadratic problem. 

3. FACTORIZATION TECHNIQUES. In this section we show that the 
linear problem (2) can be solved usinq well-known techniques by 
factoring an nxn matrix only. The Lanczos algorithm and subspace 
iteration appear to require the factorization of the 2n x 2n matrix 
A-crB. However what is actually needed is the ability to multiply 
vectors by (A-US)-B. The special structure of the A and B matrices 
allows this operator to be realized by factoring only the nxn matrix 
W(u) = M$ + Ca f K. 

Theorem 1. Let A and B be as in equation (2) and let 
W(--- + cu + K. Then 

1) The number of negative eigenvalues of W equals the 
number of eiqenvalues of A-hB between 0 and 0. 

2) (A-uB)-LB c = [I [ $$ [Kzx--&T - My) 1 
The proof is given in Scott [5]. Once the operator (A-aB)-lB has 

been realized then it is straiqht forward to implement subspace 
iteration or the Lanczos algorithm (as described in Scott [4]) to find 
the eigenvalues of A-XB near u. The number of negative eigenvalues of 
W can be easily determined as a byproduct of the factorization and so 
the index of the computed eiqenvalues can be found. 

us.ed. 
If many eigenvalues are desired then a sequence of shifts CI can be 

The eigenvalue count then gives the number of eigenvalues be- 
tween two consecutive shifts so that no eigenvalue can be knowingly 
missed. 
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4. NONFACTORIZATION TECHNIQUES. In this section we assume that 
the factorization of M, C, K, or any linear combination of them is 
either impossible or undesirable. Thus, we are basically limited to 
algorithms similar to the Lanczos Rayleigh Quotient algorithm presented 
by Scott [6) for the linear pencil eiqenproblem which uses only matrix- 
vector multiplications. 

We have developed an algorithm based on techniques for determining 
the "best" approximation to an eiqenvalue given an approximate eiqen- 
vector and the "best" approximation to an eigenvector given an 

iqenvalue. The alqorithm alternates between these approx- 
lustrates: 

approximate e 
imations unti 

I. Set 

II. For 

a. 

b. 

l“convergence, as the following outline il 

the vector x0 to random numbers. 

i = 1, 2, . . . until converqence, do a and 

Determine "best" u from x , 

Uetermine "best" x1 from u . i-l 

i i 

b. 

Step 1I.a uses a qeneralization of the Rayleigh quotient different 
from that of Lancaster's [Z] and specifically designed for the 
quadratic problem. Given any nonzero vector x, potential eiqenvectors 
of the linear pencil (A,B) given by (2) would be linear combinations of 

the vectors [xr Ol* and [0, x*1*. Using the Rayleiqh-Ritz procedure, 
the "best" approximations to eiqenvectors in this space and corre- 
spondinq eiqenvalues can be determined. Best in this context means 
minimizing the Frobenius norm of the 2 x 2 scaled residual matrix (see 
Parlett [3]). The characteristic equation of the reduced linear pencil 
in the Rayleigh-Ritz procedure is equivalent to the quadratic equation 

(x*Mx) O2 + (x*Cx) u + (x*Kx) = 0. (4) 

Thus, the approximations to two eigenvalues of the quadratic x-matrix 
are given by its roots, e+(x) and o-(x), which can be easily determined 
by the quadratic formula. If we are tryinq to converqe to a positive 
(primary) eigenvalue, then the larqer root e+(x) is chosen for oi; 

conversely, the smaller root O-(x) is chosen when trying to converqe to 
a negative (secondary) eigenvalue. The roots of (4) are identical to 
the primary and secondary functionals discussed by Duffin [I). 
However, Uuffin does not present a theoretical basis for how and why 
these roots alonq with x most closely approximates an eiqenpair of the 
quadratic X-matrix. A more thorough discussion of Rayleiqh quotient 
generalizations can be found in Scott and Ward (71. 

Step I1.b is based on the observation that if u is an eiqenvalue 
of the quadratic h-matrix with x as its eiqenvector, the matrix W(u) 
defined in Theorem 1 has the eigenpair (0, x). Theorem 1 relates the 
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eiqenvalues of the symmetric matrix W(O) to the primary and secondary 
eigenvalues of the quadratic x-matrix. Thus, to which eigenvalue we 
are converging can be controlled by the selection of the appropriate 
eigenvector of W(u) to be used in Step 11-h. For example, the 
following algorithm is used to converqe to the m smallest positive 
eigenvalues: 

I. Set the vector x0 to random numbers. 

II. For k = 1, 2, ,., m, do 1 and 2. 

1. For i = 1, 2, . . . until convergence, do a and b. 

a. Set ui = ‘+(Xi-1) - 

b. Set xi = yk, where (Ilj, yj) are eiqenpairs of 

W(Ui) with ~1 G p2 6 . . . 4 +, and y;i unit-lensth. 

2. Set x0 to the yk+l computed in step 1.b above. 

From Scott and Ward [7], we know that the sequence {uiI for k = 1 

converges monotonically downward to the smallest positive eiqenvalue, 
and the convergence is asymptotically quadratic. Also, the algorithm 
is expected to quadratically converge to the other m-l eiqenvalues, but 
convergence is not guaranteed. 

A minor modification can be made to the algorithm to guarantee 
quadratic convergence to interior primary or secondary eiqenvalues. 
This modification requires the solution to a 2k x 2k dense linear 
pencil eigenproblem in step 1I.l.a. and the computation of k eigen- 
vectors in step 1I.l.b. The following algorithm is guaranteed to 
quadratically converqence to the m smallest positive eigenvalues: 

I. Set the vector y1 to random numbers. 

II. For k = 1, 2, . . . . m, do 1 and 2. 

1. Set the rth column of the nxk matrix X-to y, 

from step I if k = 1 or from step 11.2.b otherwise. 

2. For i = 1, 2, . . . until convergence, do a and b. 

a. Set 'i = ok where ehk 6 O-k+lC .,. C ewl < 

0 < e1 6 . . . 6 ok are the eiqenvalues of 
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t-J. Set the rc column of Xi to yr, where (p5' yj) 

are the eiqenpairs of W(Oi) with IJ~ d u2 < *,. < I+, 

and yj are unit-length. 

Similar algorithms can be developed for computing the m largest posi- 
tive eigenvalues and the m largest and smallest neqative eigenvalues. 

5. CONCLUSIONS. In this paper we have presented several tech- 
niques for solvinq symmetric, definite, quadratic X-matrix problems. 
These techniques are-more efficient, in general, than applying linear 
techniques to the equivalent 2n x 2n linear problem. The convergence 
rates of the methods based on factorinq W(o) are superior to the 
convergence rates of the nonfactorization methods presented in Section 
4, and so the factorization methods should always be used if the 
factorization is possible. If the nonfactorization methods must be 
used, then it is still possible to use preconditioning techniques as in 
Scott [6] to improve the converqence, if desired. Portable software 
implement inq these alqorithms should be available in the near future. 

1. R. 

2. Pet 
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ABSTRACT 

Very large scaleleastsquares problems arise in a variety of applications, 
including geodetic network adjustments, multiple regression analysis, photogrammetry, 
earthquake studies, instrumentation planning, and certain types of finite element 
analysis. For example, the adjustment of a geodetic network with 6,000,OOO observa- 
tions and 400,000 unknowns is being considered. In this paper a new automatic 
ordering and partitioning scheme for large sparse observation matrices is developed. 
The method parallels somewhat the concept of block triangularization of square 
unsymmetric linear systems. Comparisons are made with automatic ordering schemes 
based upon software from the sparse matrix package SPARSPAR. These comparisons 
are made by investigating the computational efficiency of solving the resulting 
least squares problems using orthogonal decompositions by Givens reduction. 

April 1981 

* Parts of this paper are included in the Masters Degree theses,of David Hume in 
Computer Science and James Litsey in Mathematics at the University of Tennessee. 

** This research was supported in part by the U. S. Army Research Office under 
'Contract No. DAAG29-80-K-0025 

267 



I. INTRODUCTION AND OVERVIEW -.___ 

1. Introduction. Let A be an m x n sparse matrix with m > n and consider 
the system of linear equations 

Ax=b (1.1) 

where b is a fixed vector of length m . In general, (1.1) may not have a solu- 
tion x . In such cases, (1.1) is usually solved in the least squares sense; that 
is, the solution x is chosen to minimize the Euclidean norm of the residual vector 

r=b-Ax. 

We shall assume throughout that A has full column rank n . Under this assumption 
it is easy to verify that the least squares solution x is unique and satisfies 
the normal equations 

ATAx = ATb . (1.2) 

Since the matrix ATA is symmetric and positive definite, (1.2) can often be 
solved efficiently by the Cholesky algorithm. Yoreover, in the sparse case, there 
exists well-developed software for ordering the rows and columns of ATA to reduce 
the fill-in during the solution process. Such software is available, for example, 
in the sparse matrix package SPARSPAK (see George and Liu [1978]). In particular, 
an ordering is determined in terms of a permutation matrix P so that the Cholesky 
factor R for 

PATAPT (1*3) 

suffers less fill-in than the fill-in for the Choleksy factor of ATA . Here 
(1.3) is factored into RTR , where R is upper triangular, and then x is computed 
by solving the two triangular systems RTy = PATb and RPx = y . 

Unfortunately, the normal equations method may be numerically unstable. This 
is due to the potential loss of information in explicitly forming ATA and ATb , 
and due to the fact that the condition number of ATA is the square of that of A . 
In addition, ATA may no longer be as sparse as the original matrix A . 

A well-known stable alternative to the computation of x by solving the normal 
equations (1.2), is provided by orthogonal factorization (Golub [1965]). The 
original matrix A is reduced by orthogonal reduction to 

QA=[j, Qb=[ j 
where Q 
ATA . 

represents an orthogonal matrix and where R is the Cholesky factor of 
The least squares solution x to (1,l) is then obtained by solving the 

triangular system Rx = y . The matrix Q usually results from Gram-Schmidt 
orthogonalization or from a sequence of Householder or Givens transformations. Both 
the Gram-Schmidt and Householder algorithms process the unreduced part of A by 
columns and can cause severe intermediate fill-in. The use of Givens rotations is 
much more attractive in that the matrix A is processed by rows, gradually building 
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ll]l Ii , and intcrmcdiatc fill-in is confined to the working row. Thus, as indicated 
in Golub and Plemmons [198O], Givens rotations are generally preferable in the 
sparse case. 

2. Sources of Sparse Problems. Large scale sparse least squares problems of 
ever increasing size have arisen in recent years. One reason for this is that 
modern data acquisition technology allows the collection of massive amounts of data. 
Another factor is the tendency of scientists to formulate more and more complex 
and comprehensive models in order to obtain finer resolution and more realistic 
detail in describing physical systems. Particular areas in which such large-scale 
least squares problems occur include geodetic network adjustments (Golub and 
Plemmcmns [1980], Meissl [1980]), photogrammetry (Golub, Luk and Pagan0 [198OJ), 
earthquake studies (Vanicek, Elliott and Castle [1979]), instrumentation planning 
(Agee, Turner and Meyer [1976]), and in the natural factor formulation of the finite 
element problem (Argyris and Br6nlund [1975], Argyris et al [1978]). An example of 
truly spectacular size is the least squares adjustment of coordinates (latitudes and 
longitudes) of stations comprising the North American Datum, which is to be completed 
in 1983 by the U.S. National Geodetic Survey (Kolata [1978]). This enormous task 
requires solving, perhaps several times, a least squares problem having 6,000,OOO 
equations in 400,030 unknowns. 

3. A Sparse Least Squar-Algorithm. In Golub and Plemmons [1980], an ~ 
orthogonal decomposition procedure was suggested for solving large scale sparse 
least squares problems such as those that arise in geodetic adjustment problems. 
The method has been further developed and coded by George and Heath [1980], where 
some preliminary tests on geodetic data are reported. This algorithm consists essen- 
tially of the following steps: 

;1 * Determine the adjacency structure of the normal equations matrix ATA . 

2. Order the columns of A by a permutation P so that PTATAP has a sparse 
Cholesky factor R . 

3 . Symbolically factorize PTATAP , generating a row-oriented data structure 
for R . 

4 . Compute R by processing the rows of AP one-by-one using Givens rotations. 

Notice that Step 2 produces an indirect ordering of A , by considering the 
structure of ATA . The ordering tested by Goerge and Heath 119803 was the quotient 
minimum degree algorithm (see George and Liu [1981], Chapter 5). 

5. Overview. The purpose of this paper is to provide a direct ordering scheme 
for the observation matrix A as an alternative to Step 2. A scheme based upon 
permuting A to block upper trapezoidal form is given in Section II. In Section III 
some comparisons and tests results are given with respect to our block triangulariza- 
tion scheme and two indirect ordering schemes from the package SPARSPAR; the quotient 
minimum degree algorithm used by George and Heath [1980] and the nested dissection 
algorithm described in George and Liu [1981], Chapter 8. The results of these 
tests are reported in Section III. It is found that our direct ordering scheme is 
quite competitive with the indirect schemes for the examples we tested. This and 
other obs~:rvations are summarized in Section IV. 
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TI. A DIRECT ORDERING SCHEME --- 

1. Introduction. We now discuss an algorithm for permuting a rectangular 
matrix A of dimension m x n , m 1 n , and column rank n , into a block upper 
trapezoidal form given by 

PAQ = 

A 
11 

0 

0 

0 

A12 .*' Alk 

A22 "- 
A 2k 

0 

:\ 

* 
* 
. 

0 qxk 

In the above equation P and Q represent permutation matrices, while the Aii , 
lZi<k, with m :, n - are rectangular matrices of dimensions mi x II i ' i- i' 

The square case, where m = n and rni = ni for l<i(- k, is examined first. 
An algorithm developed by Duff [1979] for permuting a matrix To obtain a zero-free 
main diagonal and also an algorithm by Duff and Reid [1978] for permuting a matrix 
with a zero-free main diagonal to block upper triangular form are reviewed. 

The rectangular case, where m > n and mi > ni for 1 < in k is then 
examined, where the algorithms for the square case are modified to accomodate a 
rectangular matrix. An algorithm is provided to select the rows with fewest nonzero 
entries when obtaining the zero-free diagonal mentioned above. A heuristic justifica- 
tion is given for this algorithm. Also an algorithm is presented which incorporates 
the rows not included in the intermediate block upper triangular structure to effect 
a final block upper trapezoidal structure. Following the presentation of this 
algorithm is a brief discussion on uniqueness. 

2. The Square Case. The problem of permuting a square matrix A to block 
upper triangular form with square, indecomposable, diagonal blocks is reviewed first. 
Algorithms for determining certain permutation matrices R and Q such that QtRAQ 
is block upper triangular were developed in Duff and Reid [1978]. 

The advantages of expressing a square sparse matrix A in a block upper 
triangular form have to do mainly with the following facts: 

1. The eigenvalues of A are those of the diagonal blocks Aii and hence 
those of A can be computed more easily. 

2. When solving Ax = b with A block upper triangular by Gaussian Elimination, 
the elimination process can be restricted to the diagonal blocks. 

3. A matrix in block upper triangular form can be stored by blocks. Depending 
upon the sizes of the diagonal blocks, storage of only the nonzero upper 
blocks can reduce storage requirements by nearly one-half in many computa- 
tional problems. 
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Advantages also exist for permuting rectangular matrices to block upper trapezoidal 
form. These advantages involve least squares computations. 

The following definitions will facilitate the remaining discussion. A matrix 
A is said to be decomposable if there exist permutation matrices I? and Q such I-.- 
that 

PAQ = %l A12 

L I 
I 

0 A22 

where All and A22 are square. Otherwise A is indecomposable. A matrix A is 
said to be reducible if there exists a permutation matrix Q suck that -.---- 

QTAQ = A11 52 

i I 

, 
0 A22 

where All and A22 are square. Otherwise A is irreducible. Thus a decomposable --- 
matrix can be asymmetrically permuted to block upper triangular form, while a 
reducible matrix can be symmetrically permuted to such a form. Indecomposability 
implies irreducibility, but the converse of this statement is not true. 

A transversal of a matrix is a set of nonzero elements of the matrix, no two ---- 
of which are on the same row or column. The length of a transversal refers to the -->- 
number of elements included in it. A maximal transversal of a matrix is a transversal --.-- 
of greatest length. Of course a matrix can have more than one maximal transversal. 
A matrix A with full column rank n must have at least one transversal of length 
n, This fact can be shown in the following way. Suppose A has Full column rank 
n and has a maximal transversal of length kin. Then there exist n - k columns 
of A that do not include a transversal element. If the rows and columns of A are 
now permuted by P and Q so that 

PAQ = 3 

where All is a k X k matrix with main diagonal consisting of the k transversal 

elements, then the n-k columns of do not contain any transversal elements. 

It follows from the assumption that the maximal transversal has length k ) that all 
entries of the (n - k) x (I-I - k) matrix A22 are zero. Now form the set V of the 

k ccjlumns of *Il. 

I 1 A21 
. There exists a subset S of V consisting of columns 

A12 
~~hic:l~ contain the transversal clement in a row in which one of the columns of I 1 h22 
has a nonzero cntry. The columns in S contain no nonzeroes below their kth 
entr)'; otherwise the assumption that the maximum transversal is of length k is 
violated. The columns of S are linearly independent and form a basis for a vector 

Al2 
space of which the columns of 

c I h22 
Bre vectors. Therefore the columns of PAQ 
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are not linearly independent and A cannot have column rank n . A contradiction 
has been reached. Thus every matrix A of full column rank n must have a trans- 
versal of length n . It should be noted that this transversal is generally not 
unique, and also that a matrix of column rank less than n may still possess a 
transversal of length n . Once a transversal is selected, row permutations are 
sufficient to bring the transversal elements to the main diagonal. 

A simple proof of the following well-known fact can be found in Duff and Reid 
1119781 and in George and Gustavson [1980]. 

Fact. -I_ If a square matrix A has a zero-free main diagonal, then A is 
irreducible if and only if it is indecomposable. 

Thus given that a square matrix in block upper triangular form has a zero-free 
main diagonal, irreducible diagonal blocks are also indecomposable. The usefulness 
of this fact will become apparent momentarily. 

The Duff-Reid algorithms for transversal selection and block triangularization 
of square matrices are briefly summarized below. A more complete description can be 
found in Duff [1978] and Duff and Reid [1978]. 

The Duff approach to the selection of a transversal consists of two phases. 
In the cheap assignment phase each row is examined and within that row the locations ~. ---..---) 
of the nonzeroes are determined. As soon as a nonzero is found in a column with no 
transversal element assigned to it, that nonzcro is included in the transversal, 
and the next row is examined. After completion of the cheap assignment phase, the 
transversal is generally not of maximum length, The task of selecting a maximal 
transversal falls to the second phase of the algorithm, the depth first search. In -.-__* 
the depth first search phase, each row iG not already containing a transversal 
element is examined and a 
follows. 

graph theoretical reassignment chain is constructed as -- 
The chain of row indices 

32 i 
implies that element ailj 1 is currently a transversal element and aiOj 1 is nonzero; 

ai2j 2 is currently a transversal element and ail.j 2 is nonzero; etc. If such a chain 

can be formed such that there exists a nonzero aikj 0 which is in a column jo not 

currently containing a trnnsversal element, a reassignment is performed. This means 
that the elements Iailjl, ai2j2, -*b, 

_-..- 
aik.ik] belonging to the previous transversal 

are deleted from the transversal and the elements {ai . 
031' ailj2, a*'9 ElikjOl replace 

them, thereby increasing the length of the transversal by one. For a matrix of full 
column rank n , sufficient repetitions of this scheme will produce a transversal of 
length n . Finally a row permutation is performed, bringing the transversal entries 
to the main diagonal. 

The Duff and Reid 1119781 implementation of the Tarjan algorithm for permuting 
a matrix to block lower trian+lar form is easily adapted to the task of permuting a 
matrix to block upper triangular form. The algorithm is best applied to matrices 
already permuted so that the main diagonal is zero-free. For such matrices, a 
symmetric (rather than an asymmetric) permutation will be sufficient to put the matrix 
in block triangular form with indecomposable diagonal blocks, To construct the 
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permutation matrix, a directed graph of the matrix A is formed with one vertex of 
the digraph corresponding to each row of the matrix. Edges of the directed graph 

are defined in the following way. The edge m means aij # 0 , SO that a 

one-to-one correspondence exists between off-diagonal nonzeroes of the matrix and 
edges of the graph. A set of vertices any one of which may be reached from any 
other in the set by travelling along a set of edges is said to be a connected 
component. ---- If no other vertex may be added to a component without destroying its 
connectedness, the set is said to be a maximal connected component. Every directed 
graph has a unique set of maximal connected components and once these are found for 
the directed graph under consideration, a symmetric permutation is formed to relabel 
the vertices such that all vertices within a maximal connected component are labelled 
consecutively and such that if there exists an edge from a vertex in component i to 
a vertex in component j , then all vertices in component i are labelled before 
all those in component j . 

Although the final block upper triangular form is not unique, it is unique up 
to symmetric permutations within diagonal blocks and the order ol: the diagonal 
blocks along the diagonal. Another important fact is that the final form is 
independent of which maximum transversal is selected. This is because if rows (or 
columns) i and j can be interchanged in RA and a zero-free diagonal maintained, 
then vertices i and j will be in the same connected component and all four 
elements aii , a.. a.. 

"1" 
will end up in one of the diagonal blocks regard- 

less of which tran~$e~salJ~s'uti ized. The scheme discussed here for permuting a 
square matrix to block upper triangular form is modified next to produce a scheme for 
permuting rectangular matrices to block upper trapezoidal form. 

3. The Rectangular Case. We now present a new algorithm for permuting a -- 
matrix A of dimension m x n , m > n with full column rank, to block upper trape- 
zoidal form. The algorithm consist; of four main steps. The first and third steps 
are modifications of the two steps of the algorithm described earlier for permuting 
square matrices to block upper triangular form. The four steps are as follows: 

1. A transversal of length n is chosen and a permutation matrix R formed 
so that 

where A 1 is a square nxn matrix with a zero-free main diagonal. 

2. In general, matrix A can have more than one transversal of length n . 
This implies that the matrix Al chosen above is not unique. In this step 
the rows of FL4 are permuted so that Al is replaced by Ai. which contains 
as few nonzeroes as possible and still maintains a zero-free main diagonal. 
At this point in the algorithm 

R'(M) = K' , 

where Ai consists of the n rows of the original matrix A which contain 
the fewest number of nonzeroes and can still be permuted to yield a zero- 
free diagonal. 
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3. In this step a permutat ion matrix Q is formed to symmetr ically permute 
the square matrix Ai to block upper triangular form, 

where AT is block upper triangular with indecomposable diagonal blocks. 

4. Finally, a block upper trapezoidal form is achieved by forming a permutation 
matrix P such that 

P 

where each Ai,i 

Qt 0 [ 1 R'RAQ = 

O 'm-n 

c 
A 

”  

11 A12 * * * %p 

0 A22 - * - A2p 

0 0 
I . 
. . 

.(!I ;, 
\ 

. 
* 
* 

. ..A 
PP' 

, 

is a rectangular block of dimension mi x ni , with mi ) ni 

Each step is now examined in more detail. 

Selecting an Al 

Selection of a transversal for A is achieved by slightly modifying the Harwell 
subroutine MC2lA (Duff [19783) so that all m rows may be scanned during the cheap 
assignment and depth first search phases. Selecting a transversal of length n is 
generally faster for an m x n matrix of rank n with m > n than for an n x n 
matrix of rank n ; for, since there are more rows to scan during, the cheap assignment 
phase, one would expect a greater number of transversal elements to be found during 
cheap assignment in the rectangular matrix, thereby reducing the number which must 
be found by the more expensive depth first search. Output of the modified MC21A 

subroutine is an m-vector defining a row permutation of A to Al [ 1 A2 * 
The permuta- 

tion matrix R is, of course, never formed. 

Selecting an Ai 

The matrix Ai , as noted earlier, is a member with fewest nonzeroes of the set 
of all possible n x n matrices with zero-free diagonal which may be formed by 
choosing n rows of A . Ai is not unique, a fact that will be discussed later. 

The selection of Ai is motivated by heuristic considerations. If it is 
agreed that a final block upper trapezoidal structure with more zeroes below the 
diagonal blocks is more desirable than an alternate block upper trapezoidal structure 
with fewer such zeroes, then it is often better to have narrower (and thus more) 
diagonal blocks. Since the width of the dia onal blocks is completely determined by 

a the sizes of the square diagonal blocks in Al at the end of step three, it follows 
that one would like to promote, if possible, smallness of these blocks. This may be 
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done, in a heuristic sense, by choosing a matrix Ai for block upper triangulariza- 
tion in step three for which the associated graph has few edges and therefore tends 
to have more, smaller, connected components rather than a few large ones. The size 
of the connected components determines the size of the diagonal blocks. Using an 
arbitrary Al rather than Ai can have a drastic effect on the block structure of 
the f'inal form. 

In the example below, the rows of RA in (2.1), are permuted to yield R'RA 
in (2.2). The effect of this permutation is to replace an A, submatrix with the 
Ai submatrix. 

RA= 

1110 

0 111 

10 10 

0 0 01 

J. 

Al = i----. 1 A2 
(2.1) 

R'RA = 

110 0 

1 010 0 

-1 1 0 0’ 

0 1 0 0 

10 10 

0 0 0 1. 

1110 

-0 1 1 1. 

(2.2) 

Note that the Al submatrix in (2.1) is in block upper triangular form, with 
one 3 x 3 diagonal block and one 1 x 1 diagonal block. The hi submatrix in 
(2.2) is not yet in indecomposable block upper triangular form. This form is shown 
below. Note the four 1 x 1 diagonal blocks. 

R'RAQ = 

P 
1 

0 

0 

0 

1 

1 

1 0 

3. 1 

0 1 

0 0 
-I--~ 

11 

0 1 

0 

0 

0 

-1 

1 

0 

1 

(2.3) 
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The following algorithm finds an A; using a graph theoretical technique. In the 
discussion below, a path is sought in a directed graph with m vertices, each 
corresponding to one of the m rows of the matrix RA , and where the edge 

@--Q corresponds to a nonzero entry aji * Note that the existence of an edge 

from i to .j means that if row i is currently in Al , row j could replace 
row i and Al will still have a zero-free main diagonal. If row j had previously 
been in A2 and had fewer nonzeroes than row i , then exchanging row i and row 
5 would have the desired effect of reducing the number of nonzeroes in Al while 
preserving the zero-free main diagonal. 

In general, a path corresponding to a desirable row permutation is of the form 

“0 i 
where al.1 vertices except ik correspond to rows in Al and row ik has fewer 
nonzeroes than row il . The cyclic row permutation defined by this path would 
replace each row by the row after it on the path and would replace row ik by row 
il a This would result in a net exchange of one row between Al and A2 . The 
permutation corresponding to each such path is performed as the path is found. 

The path can end without defining a desirable permutation. This can happen 
either of two ways. The path may reach a vertex corresponding to a row in Al from 
which there are no departing edges, or the path may reach a vertex corresponding to 
a row in A2 which does not contain fewer nonzeroes than the row at the beginning 
of the path. IF either event occurs, the last edge on the path is removed and a 
replacement sought. This process is called backtracking. 

The following path could be constructed using the matrix in (2.1): m. 

The path ends at 5 since 5 > 4 = n , and the fifth row contains fewer nonzeroes 
than does the first row. Performing the reassignment indicated by this chain 
involves replacing row 1 by row 3, row 3 by row 2, row 2 by row 5, and row 5 by row 
1. The resulting matrix is shown below. 

R'RA = 

i 010 i 010 

1 1 0 0 1 1 0 0 

0 111 0 111 

0 0 0 1 0 0 0 1 

1110 1110 

,o .L 0 o_ ,o .L 0 o_ 

(2.4) 

Performing the permutation results in a net ga.i.n of one zero for Al m At each 
stage in the construction of a path, the algorithm will attempt to add a vertex 
corresponding to a row in A2 before adding one corresponding to a row in Al , 
thus tending to find the shortest and simplest permissible path. Note that Step 2 
is not yet complete, for rows 2 and 6 should be interchanged to minimize the number 
of nonzeroes in R'RA . 
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Block Triangularizing A; 

The square submatrix A; can be permuted to upper bl.ock triangular form by the 
modif ied Hnrwcll. subrout inr MC13D (Duff and Kc1.d [ 1978 1) discussed,earlier. No 
speci,ll modifications need be made for the rectangular cast since A is square. 
The u.scr mustYremember, however, not only to symmetrically permute A t e rows and 
columns of Al , but also the columns of A$ as well. 

Row Permutation to Final Form 

After the matrix has been permuted so that 
square indecomposable diagonal blocks, 

AT is block upper triangular with 
the rows of the lower submatrix A2 must be 

permuted into the Af matrix in such a manner as to obtain the block upper trape- 
zoidal form. This will make some of the diagonal blocks rectangular and will remove 
all nonzeroes from beneath the diagonal blocks. Each row in A$ is examined to 
determine the column index of its first nonzero. The row is then inserted into 
AZ just above the row containing the transversal element in that column. If 
another row in A? has its first nonzero in the same column, this row is inserted 
into AT just above the row previously inserted. For example, this method would 
permute Chc matrix in (2,3) in the following manner, 

The final block upper trapezoidal structure of a given matrix is of course not 
unique. In general there are several possible maximal transversals yielding several 
different Al submatrices, each having the minimum number of nonzeroes possible. 
Lack of uniqueness of the final block structure is also due to the fact that there 
may be more than one way in which the diagonal blocks may be permuted among themselves 
and ::till. prcservc the block upper trapezoidal form. Some of thcsc permutations 
<are more dcsir:lble than others, as they result in a "dual angular" form as described 

lemmons [1980]. in Go I.ub and P 

P R'RAQ = 

1.0 11 

1 1 1 0 

110 0 
I 

0 10 L 

I 
0 0 0 1 

b 
0 0 _ O-1 

(2.5) 

III. COMPARISONS AND TEST RESULTS -. _I-- 

1. Test Problems. 'Tlle relative performance of four methods for ordering a 
large sparse system of linear equations prior to solution of the system using Fivens 
rotations was compared. The four ordering options used were: 1) no ordering at 
all, 2) yuoticnt mi.nimum degree ordering, 3) nested dissection, and 4) block trape- 
zoidal ordering. These Four ordering options were compared on four sparse systems 
of equations, of' sizes 75 x 50 , 100 x 75 ) 150 x 100 , and 892 x 261 a The 
first three exnnples were constructed by the authors with known solutions in order 

277 



to check the accuracy of the programs. The fourth example consisted of actual 
geodetic network data obtained by the U.S. National Geodetic Survey. All programs 
were written in IBM H Extended Fortran and run on an IBM 370/3031 computer. 

2. Software Used. - --..-- The basic software package used in this project was a double 
precision version of SPARSPAK, a sparse matrix package of subroutines written and 
documented by George and Liu 11978, 19811. This package was extended by George 
and Heath [1980] to provide for solving a sparse least squares problem using Givens 
rotations in conjunction with quotient minimum degree ordering. Harwell subroutines 
MC21A and blC13D, developed by Duff [1978] and Duff and Reid [1978], were adapted 
:~nd used by Litsey [1980] inhis implementation of the block trapezoidal ordering 
method. In this project, the authors combined and modified all of the above soft- 
ware in order to test and compare the four ordering options in conjunction with the 
Givens method for solving least squares problems by orthogonal decomposition. 

Tile "no order%" option was tested in order to provide a benchmark against --.-._- 
which to compare the effectiveness of the other three ordering methods. The quotient --- 
minimum degree ordering scheme attempts to minimize fill-in by reordering an ---__ 
original nxn matrix A in the following way: at each stage, if columns 
1 k have been 
ii'tde 'r;maining (n - k) 

selected already for the reordered matrix, then the column 
x (n - k) submatrix with the fewest number of nonzeroes 

is selected as the (k+l)st column in the reordered matrix. The nested dissection 
ordering method attempts to permute the matrix A in such a way that it can be - 
broken down recursively into subblocks which are connected in a well-defined way. 
As a result of this dissection process, zero blocks are formed with remain zero 
after the reordered matrix is factored, thus reducing the fill-in. 

3. Formr,t of Data. Data for sparse matrices is entered according to one of ---_---_ 
two schemes. In the first scheme, each non-zero entry of the matrix is entered as 
a triple consisting of its row index, column index, and value. Triples may be 
entered in any order, subject to the condition that all entries of a given row must 
be entered together as a group. Thematrix is then stored in four arrays: arrays ICN 
and VALUE contain column indices and correspvnding values of all non-zero elements in 
the matrix; array element U(I) points to the position in ICN where column 
indices for the It" row begin, and array element LENR(I) gives the number of non- 
zero entries in the Ith row, The Harwell-block trapezoidal ordering code requires 
this storage scheme. SPARSPAK routines, as adapted for Givens rotation&utilize 
a different scheme for storing a sparse matrix. They accept one row of the matrix 
at a time, according to the format NSUBS, (SUBS(K)), VALUE (K), K = 1, NSUSS) where 
NSUBS is the number of non-zero entries in the row, SUBS(K) is the column index of 
the k'h non-zero entry in the row, and VALUE(K) is the corresponding value of that 
entry. 

In addition to providing the sparse coefficient matrix according to the correct 
format, one must input for each equation its right-hand side and a possible weighting 
factor for the equation (in the context of least squares). 

4. Organization of Computer Programs. The basic program used in this project 
consists of two job steps, as indicated in Figure 1. In job step 1, data for a 
sparse system of equations is read according to its original format and converted 
to an Lippropriate format for the next stage (Step A). For ordering options other 
than block trapezoidal ordering, the data is stored on a disk according to the 
SI'ARSI'AK row-by-row format and the data is passed to job step 2 (Step C). For the 
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block tr-apezoidal ordering, the original data is converted to the lIarwell scheme, 
orbcrinp is performed (Step B), and the resulting matrix is then converted to 
SPAKSF'AK format on the disk before being passed to step 2. 

I - 

! 
I 

Figure 1. Schematic View of Program 

Job step 2 is executed in a SPARSPAK environment under control of a main driver 
routine. After the zero-nonzero structure of the coefficient matrix is read in 
(Step u>, one of three ordering options is selected: the system is ordered by 
quotient minimum degree ordering (Step E), nested dissection (Step F), or no ordering 
is performed (Step G). After rewinding the reordered data set on the disk, numerical 
values for the system are read one row at a time, each row is reduced by Givens 
rotations to form the Cholesky factor R (Step H), and the least squares solution 
to the system is computed (Step I). Finally, statistics provided by SPARSPAK are 
printed out (Step J). 

The four sequences of execution steps listed below correspond to the four 
ordering options named: 

no ordering 

quotient minimum degree 

nested dissection 

block trapezoidal 

5. Basis for Comparison of Methods. The SPARSPAK package provides statistics 
which: estimate the storage and execution time required for solving a given system 
of linear equations, Execution times (in seconds) are reported for each of four 
individual steps: ordering (Finding permutation matrix P to obtain PAPT>, storage 
alloc.ation (set up data structure for storing the Cholesky factor R of PAPT ), 
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factorization (numerically factor PAPT into RTR ) , and triangular solution (solve 
KTy = Pb , Rz = y , and set x = PTz ). Storage requirements axe given for the 
ordering, allocation, and factorization solution steps. Also, operation counts 
are given for the factorization and triangular solution steps; actual values are 
manipulated in these two steps. An operation is defined to be a multiplication or 
division since most arithmetic operations in matrix computations occur as a multiply- 
add pair. Final fill-in is said to occur whenever the Cholesky factor R hasa 
non-zero element in a position which contains a zero element in the upper triangular 
portion of the matrix PAPT . The ambunt of intermediate fill-in along with the 
final fill-in are reflected in the numhcr of operations for factorization. 

6. Test Kesults. Table 1 contains selecI.ed results for the four systems of 
equations-Ax = b which were tested. The size of sparse matrix A is given at 
the top of each column. 

IV. OBSERVATIONS ---- 

1. Test results reported in Table 1 indicate that the block trapezoidal ordering 
scheme performs quite well in reducing both intermediate and final fill-in to the 
observation matrix during the orthogonal decomposition. For these four test problems, 
the minimum degree algorithm performed slightly better than the other two ordering 
schemes. For the geodetic network problem, all three ordering methods resulted in a 
ten-fold or greater reduction in factorization time, operations during factorization, 
and final fill-in. 

2. With regard to ordering time, the block trapezoidal algorithm performed 
considerably worse than the other schemes. We feel that this is due in large part 
to the fact that the software for the minimum degree and nested dissection algorithms 
is well-developed and optimized whereas the software for the block trapezoidal 
algorithm is still in a rough state; further work in developing this software is 
underway. 
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TABLE I 

Test Results 

75 x 50 100 x 75 150 x 100 892 x 261 

No order-ing --_- 
1. Fill-in (approximate) 

2. Operations for 
factorization 

182 209 893 7884 

100,314 106,186 387,445 37,211,056 

3. Time for allocation -326 .415 ,532 1.301 

4. 'lime for factorization 1.084 1.223 3.274 246.728 
and solution 

Minimum Degree 

1. Fill-in (approximate) 

2. Operations for 
factorization 

3. Time for ordering 
and allocation 

4. Time for factorization 
and solution 

Nested Dissection 

1. Fill-in (approximate) 

2. Operations for 
factorization 

3. l'ime for ordering 
and allocation 

4. Time for factorization 
and solution 

0 0 254 0 

46,162 49,288 185,588 3,128,844 

,565 .669 1.112 6.593 

-676 -778 1.930 27.187 

64 66 512 429 

65,063 63,597 287,323 3,056,212 

-359 .491 .608 1.459 

-324 .881 2.680 26.303 

Block Trapezoidal 

1. Fill-in (approximate) 134 

2. Operations for 60,032 
factorization 

3. 'rime for ordering 1.853 
and allocation 

4. 'rime for factorization .776 
.3nd solution 

185 512 226 

79,446 284,555 4,386,519 

4.33 3.150 219.830 

-975 2.651 37.720 

281 



bJ. F. /:j’Cf, H, H. Turner and J. L. Meyer [1976], “Optim.31 instrumentation planning 
using an LDLT factorization," Proc. 1976 Army Numcrr. Anal. and Computers Conf. -_ -- 

J. H. Argyris and 0. E. Bronlund [1975], "The natural factor formulation of the matrix 
displacement method," Computer Methods in Applied Mechanics and Engineering, ------.----,.--- 
1'01. 15, pp. 365-388. 

J. H. Argyris, et al [1978], "Finite element method -- The natural factor approach," 
Computer Methods in Applied Mechanics and En_F_I:pAering, Vols. 17, 18, pp. l-106. _ . ..,.._ .- -.- -.~- ---- ,, - --.----- -~. _,_ --. _ .-_ ._ 

I. S. Duff 119,781, "On algorithms for obtaining a maximum transversal," AERE Harwell 
Report CSS49, Harwell, England. ---.-- -- 

1. S. Duff and J. K. Kcid [1978], “An implementation of Tarjnn’s algorithm for the 
block triangularization of a matrix," ACM Transactions on Mathematical Software - 
Vol. 4, PP. 137-147. 

A. George and F. G. Gustavson [1980], "A new proof on permuting to block triangular 
form," Preprint. 

A. George and M. T. Heath [1980], "Solution of sparse linear least squares problems 
using Givens rotations," Linear Algebra and Its Applications Vol. 34, pp. 69-84. --' 

A. George, M. T. Heath and R. J. Plemmons [1981], "Solution of large-scale sparse 
least squares problems using auxiliary storage," SIAM J. Scientific and 
Statistical Computing-, to appear. --..---- 

A. George and J. Liu [19781, "Users guide for SPARSPAK -- Waterloo sparse linear 
equations package," Report CS-78-30, Dept. of Computer Science, University of 
Waterloo, Canada. 

A George and J. Liu [1981], Computer Solution of Large Sparse Positive Definite 
Systems, Prentice-Hall, Englewood Cliffs, N.J. 

G. H. Golub [1965], "Numerical methods for solving linear least squares problems," 
Numcr. Math., Vol. 7, pp. 206-216, - 

G. H. Golub, F. T. Luk and M. Pagan0 [1980], "A sparse least squares problem in 
photogrammetry," Proc. Computer Science and Statistics-- Twelfth Annual 
Symposium on the Interface. 

G. H. Golub and R. J. Plemmons [1980], "Large scale geodetic least squares adjustments 
by dissection and orthogonal decomposition," Linear Algebra and Its Applications, 
Vol. 34, pp. 3-28. 

G. B. Kolata [1978], "Geodesy-Dealing with an enormous computer task," Science, Vol. 
700, pp. 421-422. 

J. Litsey [1980], "Finding a block upper trapezoidal form of a rectangular matrix," 
Thesis for the M.S. degree, Dept. of Math., wversft- &Tennessee, Knoxville, TN. 

P. Meissl 119801, "A priori prediction of roundoff error accumulation during the 
direct solution of super-large geodetic normal equations, "NOAA Professional 
Paper 12, National Geodetic Survey, Rockville, MD. 

P. Vanicek, El. R. Elliott and R. 0. Castle [1979], "Four dimensional modeling of 
recent vertical movements in the area of the Southern California uplift," 
Technophysics, Vol. 52, pp. 287-300. 

282 



TRANSVERSE CURRENTS AND OHMIC LOSSES OF 
HlCROSTRIP OBTAINED FROM A H~TRI.X FORMULATION 
WHICH FACILITATES THEIR h'UNERI.CAL CALCULATION 

Peter J. McConnell and Robert T.,.. Brooke 
US Army Mobility Equipment R&D Command 

Fort Belvoir, Virginia 22060 

ABSTRACT: A matrix formulation is developed for calculating the transverse 
currerlt distribution of microwave transmission lines and applied to solving for 
frequency dependent impedance ahd loss of microstrip commonly used for antenna 
feedlines and in microwave construction. The solution fs based on calculating 
the effective inductance per unit length, and is unique in providing the frequency 
dependence and ohmic losses for any geometry. Results for specific geonetries 
are compared favorably with earlier capacitance based solutions. The frequency 
dependance of current distribution and characteristic impedance will be shown for 
two commonly employed geometries. 

1. IN-RODUCTION. The characteristic impedance of Microstrip Transmission 
Lines-has been of interest for twenty-five years. An excellent compilation of 
selected papers is contained in reference (I) including several early papers 
specifically addressing Microstrbp. The papers by Cohn (2). Wheeler (3), and 
Bryant and Ueiss (4) are especially fundamental and useful for common engineering 
problems. These papers, and a multitude of others published since, depend on 
solving for the static capacitance per unit length of the selected line configuration. ; 
Most practical geometriek do not lend themselves to an exact analytic solution 
so much effort has been devoted to developing approximate analytic solutions. 
With ,the advent of the high speed computer a considerable effort has been devoted 
to developing numerical techniques for solving Laplace's equation to yield the 
elect-ric field configuration and capacitance of useful geometries. Reference 
(5) is a notable example of this approach. 

The approach used in this paper, while nonanalytic is quite general and 
vithouf any geometric limitation in the transverse plane. This approach is 
unique in that the effects of finite conductor losses and frequency dependence 
can bu included in the analysis. Assumptions made by other authors are also 
made here. The lines to be analyzed are assumed to be relatively IOU loss lines 
supporting Quasi-TEN modes. Capacitance based solutions are static solutions 
which approach exactness only for lossless lines. The inductance based solution 
to be developed and applied here can allow for losses but is quasi-static and 
retarded potentials have not been considered. 

2. THEORETICAL DFVELOPMEhT. If the line has finite losses, the characteristic 
impedance and progagation constant, y, can be calculated from 

yeni-jB = v(R + jvL)(G + jwC) 
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Where R and G are the series resistance and shunt conductance per unit length of 
the line and a and 0 are the attenuation and phase constant of the line. With 
the appropriate modifications to account for normal low loss transmission line 
and other reasonable assumptions given in reference (7). an alternate equation 
for characteristic impedance results in the form 

where L is the inductance per unit length and is directly affected by both the 
resistance of the line and frequency. 

The geometry to be solved is shown in Figure 1. 
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Figure 1 
Transverse Geometry 

For generality the two conducting tapes are allowed to have differing widths, 
however they will be maintained parallel and with their mid-points defining a 
plane normal to both. This is a simplification, and is non required, but will 
shorten computation time substantially. This configuration can be used to 
represent microstrip examples given in references (3) and (4), and direct com- 
parisons of results made for limiting cases of high frequency and no loss. In 
addition, this arrangement allows for calculating the parameters of antenna feed- 
lines where the widths are the same as well as microwave components where the 
ground plane has a known finite width. 

Mathematically subdividing the conductors into smaller parallel sections 
is accomplished as shown in Figure 2. Thts method of subdivision is arbitrary 
and is retained for consistancy with reference (7). 
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I 
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I 
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I 
I 

Figure 2 
Method of Indexing Subdivisions 

The two conducting tapes have now been replaced by 4n thin parallel tapes, each 
of which may carry a different current. An equivalent circuit of the trans- 
mission line then looks like that in Figure 3. 
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Figure 3 
Equivalent Circuit 
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The width of each subsection will be chosen sufficiently small to 'consider 
the current density in each to be uniform. DC inductance equations are available 
to calculate the mutual inductance between any two subsections and the self 
inductance of each. The resistance of each section will be the dc resistance 
calculated from the input parameters of bulk reslstivfty and incremental area. 
The incremental area is defined by the smaller of the actual tape thickness or 
an arbitrary multiple (an input parameter) of the skin depth, and the subsection 
width. In this paper, the upper and lower tapes are each divided into 2n equal 
width subsections. References (7) and (8) discuss alternative methods used to 
speed convergence for different geometries. 

The current in each element can be expressed in terms of an arbitrary applied 
voltage, resistive voltage drops, and induced voltages due to all current elements. 
This leads to a set of linear equations which can be numerically solved for the 
current in each subsection. The matrix algebra is tedious and will not be given 
here. The effective inductance per unit length can then be found as; 

Leff = k ' ak 

(Cak12 + (Zbk12 ' 

and the effective resistance as; 

1 
7 C ak 

Rcff = ---- . 
(zakj2 + (Zbk12 c 

where a k and b k are the in phase and quadrature components of current in each 

substitution. 

3. RESULTS & COMPARISON. Two cases were calculated and compared with 
results produced by other authors. An equal width case was compared directly 
with the results of reference (3) and an unequal width case with the results of 
reference (4) providing the larger tape is at Least ten times the width of the 
smaller, as the latter reference assumes an infinite ground plane. Only the high 
frequency or lossless case will be considered since this is also an assumption of 
the references. The comparative values obtained from the references required 
interpolating published response curves. The excellen agreement is more than 
would have been expected. The slightly high bias of the results in Table 2 are 
probably the result of the finite dimension of the Larger tape. The program 
calculations have been rounded to the nearest ohm. 

The current distributions produced in solving for the results of Table 1 
are shown superimposed in Figure 6 for values of v/h from one to thirty. It is 
clear that widening the two conductors results in a more uniform distribution of 
current in the transverse plane and better shielding. This of course is what 
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onk should expect, and 16 used a6 the basis in reference (3) for a wide tape 
spproxlJnation, and to establish a limit for the effective dielectric con6tant 
of K dielectric and propagation velocity of vc1.G + 

TABLE 1 
CO~~PARISON 0F RESULTS FOR EQUAL WIDTH (K=l) 

W/h WHEILER (REF 3) THIS METHOD 

0.3 315 313 

0.4 279 280 

0.5 252 254 

0.6 232 234 

0.7 226 217 

0.8 202 202 

0.9 189 190 

1.0 178 179 

3.0 87 87 

1Q.O 32 325 

TABLE 2 
COhIPARlSON OF RESULTS FOR UNEQUAL WIDTH (K=l) 

w1 / h 

WI / W, = 10 

0.6 

0.8 

1.0 

2.0 

3.0 

BRYANT L WEISS 

(REFERENCE 4) THIS h!EWOD 

156 160 

140 142 

127 128 

87 90 

67 70 
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1 w/h = 30 

TRANSVERSE CUT 

EQUAL TAPE CURRENT DISTRIBUTION 
AS A FUNCTION OF WIDTH/SEPARATION 

4. CONCLUSION. In this report we have shown a method to calculate the 
inductance per unit length and ohmic losses of microstrip line with general 
cross-sectional geometry. A program, developed to apply this technique, was 
exercised for simple cases and the results found to agree with those of other 
authors using capacitance based solutions. This approach is unique in that it 
directly provides the transverse current distribution and ohmic attenuation at 
all frequencies. It can provide new insights into factors which cause loss in 
microwave coplponents and help explain the effective behavior of currents on 
extended antenna structures. A clear understanding of antenna feedlines and 
radiating elements can only be reached if the current distribution is known. 

For a more complete development of this approach and a detailed examination 
of frequency dependence of current, impedance, and loss, the reader is referred 
to reference (11). 
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ASPECTS OF ALGEBRAIC COMPUTATION 

B. F. Caviness’ 
General Electric Research and Development Center 

Schenectady, NY 12345 

ABSTRACT In this brief paper we give some examples of the current state of 
algebraic computation plus some references for further reading on applications 
and the design of algebraic algorithms. The appendix contains a short direc- 
tory of computer algebra systems. 

1. . INTRODUCTION Algebraic (or symbolic) computation is a type of scientific 
computing in which computations are carried out with algebraic and other sym- 
bols in addition to numeric entities. Also, typically, the computations are 
carried out exactly, unlike most numerical calculations where computations are 
carried out using approximate arithmetic. In this short paper we will give 
some examples of the capabilities of current computer algebra systems, note 
some applications, and suggest what the future holds. 

2. EXAMPLES OF CURRENT CAPABILITIES Soms examples will help to clarify what 
is meant by algebraic computation, to distinguish it from the more commonly 
known numeric computation, and to indicate the scope and abilities of current 
systems, It is po sible using algebraic systems to calculate indefinite 
integrals such as 

I 
sin x dx and obtain the result -cos x. It is also possible 

to calculate some efinite integrals exactly. For example, using Macsyma (see 
the end of the demonstration given below) [MATH771 one can ask to calculate 

r 

. 
“g =dx and receive the exact answer, n. This integral can, of course, also 

bz calculated using numerical techniques, but one then obtains an approximate 
answer. 

To further indicate the scope and abilities of modern algebraic compnta- 
tion systems, we give below a copy of a session using Macsyma. The lines 
labelled (Cl), (C21, me., axe inputs typed by the user. The corresponding 
output lines produced by the computer axe labelled (Dl), (D21, a**. The CPU 
time required for each computation is given just before each computer 
response. The times, given in milliseconds, are for a PDP-KU0 at MIT. Lines 
enclosed in /* 80. l / brackets axe comments typed by the user. 
(Cl) ,I* Read pretpped file of commands */ 
demo(bfc,demoll ; 

(C2) ,I* Display CPU time */ 
showtime:true$ 
Time= 2 msec. 

(C3) ,I* Type and display function */ 

1. Present address: Department of Computer and Information Sciences* 
University of Delaware, Newark, Delaware 19711 
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x/(x**3*11m 
I 

Time= 9 msec. 

(D3) 
X 

------ 
3 

x +1 

(C4) I* Add previous function to itself. % refers to the immediately 
preceding expression, D3 in this case. *I 

wb; 
Time= 3 msec. 

(D4) 
2x 

----- 
3 

x +1 

(C5) (X+3)**20; 
Time= 8 msec. 

(D5) 
20 

(X f 3) 

(C6) /* Expand the previous expression */ 

RATSIMPW~ 
Time= 100 ksec. 

20 19 18 17 16 15 
(D6) x -k 60 X + 1710 x + 30780 X + 392445 x f 3767472 X 

14 13 12 11 
+ 28256040 X + 169536240 X + 826489170 X + 3305956680 X 

10 9 8 7 
f 10909657044 X i- 29753610120 X + 66945622770 X + 123591918960 X 

6 5 4 3 
-I- 185387878440 X + 222465454128 X * 208561363245 X + 147219785820 X 

2 
+ 73609892910 X + 23245229340 X + 3486784401 

/* Note the large integers in the above expression that occur without 
any truncation *I 

(C7) /* Differentiate the previous expression *I 

DIFF(+,X); 
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Tim*s= 198 msec. 
19 18 17 16 15 14 

tD7) 20 X + 1140 x + 30780 x + 523260 X + 6279120 X + 56512080 X 

13 12 11 10 
+ 395584560 X + 2203971120 x + 9917870040 X + 36365523480 X 

9 8 7 6 
+ 109096570440 X c 267782491080 X + 535564982160 X + 865143432720 X 

5 4 3 2 
+ 1112327270640 X + 1112327270640 X + 834245452980 X * 441659357460 X 

+ 147219785820 X + 23245229340 

(C8) /* Now factor it l / 

FACTOR(%); 
Time= 1186 msec. 

(~8) 
19 

20 (X + 3) 

(C9) /* This shows a numerical capability of the system. %e is the 
constant e. */ 

ke**x**3 ; 
Time= 10 msec. 

(D9) 

3 
X 

%I3 

(Cl01 ROMRER.G(ev(%),Xrlr2); 
/* This computation requires some programs to be loaded from disk l / 

ROMBRG FASL DSK MACSYM being loaded 
Loading done 

NUMER FASL DSK MACSYM being loaded 
Loading done 
Time= 1165 msec. 
(DlO) 275.51098 

(Cl11 /* Macsyma has several routines fox manipulating 
series of various kinds. The following is a Taylor series. */ 

TAYLOR(SIN(X),X,0,9); 

RAYAT FASL DSK MACSYM being loaded 
Loading done 
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Time= 71 mscc. 
3 5 7 9 

x x X X 
(Dll)/T/ x - -- + --- - ---- + ---... + , . , 

6 120 5040 362880 

(Cl21 I* Taylor can also compute Laurent expansions */ 

TAYLOR(l/(COS(X)-SEC(XW*3,X,Or5); 

EULBRN FASL DSK MAXOUT being loaded 
Loading done 
Time= 233 msec. 

2 4 
1 1 11 347 6767 X 15377 x 

(D12)/T/ - -- + --I_ + ----- - ----- ..,, ---w-m- h ----w-T- + * l V 6 4 2 15120 604800 7983360 
X. 2x 120 x 

(Cl31 /* Macsyma can solve some systems of non-linear equations. Here 
we compute exactly the six roots of unity. */ 

SOLVE FASL DSK MACSYM being loaded 
Loading done 
Time= 1295 msec. 

SQRT(3) %I + 1 SQRT(3) %I - 1 SQRT(3) %I f 1 
(D13) TX = 1---------+-1** x = C-l---+-------, x = - 1, x = - --------------, 

2 2 2 

SQRT(3) %I - 1 
x = - --------------, x = 11 

2 

(Cl41 /* Now solve system of equations l / 

SOLVE([A*X+B*Y = O,C*X+D*Y = ll,[X,Yl); 
Time= 163 msec. 

B 
(D14) [[X = ---------, y = - 2 ----] ] 

BC-AD BC-AD 

(C15) /* NOW define a matrix l / 

MATRIX([A,B,CI,ID,E,Fl,IG.H,Il); 
Time= 7 msec. 

[A B Cl 
[ 

(D15) [D E F; 
1 
[G H I; 
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(Cl51 I* and take its transpose */ 

Time= 6 msec. 

(D16) 

[A D Gl 
1 3 
[B E El 
1 
[C F I; 

(C17) /* Now compute the matrix product of it and its transpose. 
'kTH(2) refers to the second previous expxession, D15 in this 
case. l / 

% l %X-H(2); 

MDOT FASL DSK MACSYM being loaded 
Loading done 
Time= 130 msec. 

c 2 1 
.[ G +D2+A2 GH+DE+AB GI+DF+AC] 

1 
(D17) i 2 2 2 1 

IGB+DB+AB 
H +E +B HI+EP+BCl 

I 
1 2 2 2 1 
[GI+DF+AC BI+EF+BC I-I-F-+-C 1 

(Cl81 I* Create a Vandermonde matrix */ 

MATH1X(~X**2,X,11.~Y**2,Y,11,[2**2,2,11); 
Time= 10 msec. 

[ 2 1 
L x x 11 
[ 

(D18) 12 ; 
1 Y Y 11 
E I 
[ 2 1 
r 2 z 11 

(Cl91 /* Now compute its determinant l / 

DETERMINANT(%); 
Time= 39 msec. 

2 2 2 2 2 
(D19) -YZ - x (Y - z ) + Y z + x (Y - Z) 

(C20) /* Factor the determinant l / 

Factor(%); 

295 



Time= 750 msec. 
(D20) - (Y - Xl (Z - X) (Z - Y) 

(C21) /* Symbols can be given mathematical properties l / 

DECLARE(N,ODD)t 
Time= 12 msec. 

(C22) /* and then these are used in evaluating subsequent expressions l f 

COSW%PIl2); 
Time= 56 msec. 
(D22) 0 

(C23) F(X+Y); 
Time= 4 msec. 
(D23) F(Y + X) 

(C24) I* Another such example *I 

DECLARE(F,LINEAR)$ 
Time= 3 msec. 

(C25) F(X+Y); 
Time= 9 msec. 
(D25) P(Y) + F(X) 

(C26) I* A dramatic example of "infinite-pxecision'* arithmetic */ 

1001; 
Time= 34 msec. 
(D26) 93326215443944152681699238856266700490715968264381621468592963895217599# 

99322991560894146397615651828625369792082722375825118521091686400000000000000# 

0000000000 

(C27) /* Macsyma can also be used as a programming language. The following 
code defines the factoxial funotion. */ 

FAC(N):=IF N = 0 TEEN 1 ELSE N*FAC(N-1); 
Time= 5 msec. 
(D27) FAC(N) := IF N = 0 THEN 1 ELSE N PAC(N - 1) 

(C28) /* Now use oar newly defined function. Compare the execution time 
to the built-in factorial function used in C26. */ 

FAC(5); 
Time= 54 msec. 
(D28) 120 

(C29) I* There are also facilities for large floating-point precision. 
The following instruction sets the floating-point precision 
to 50 decimal places. +I 
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FPPREC:SO$ 

FLOAT FASL DSK MACSYM being loaded 
Loading done 
Time= 41 msec. 

(C30) /* Now print pi with this precision. l / 
BFLOAT(%PI); 
Time= 53 msec. 
(D30) 3.1415926535897932384626433832795028841971693993751B0 

(C.32) demo(bfc,demol); 

(C33) SHOWTIBE:TRlJE$ 
Time= 3 msec. 

(C34) x/(x**3-1); 
Time= 10 msec. 

X 
(D34) -_-d-- 

3 
X -1 

(C35) /* Compute the indefinite integral of the previous expression. l / 
INTEGRATE@o,X); 

SIN FASL DSK MACSYM being loaded 
Loading done 

SININT FASL DSK MACSYM being loaded 
Loading done 

SCBATC FASL DSK MACSYM being loaded 
Loading done 
Time= 419 msec. 

2x+1 
2 ATAN(-----I 

LoG(X + x + 1) SQRT(3) LoG(X - 1) 
(D35) - ---l____d__hl-l + ___l-_dl-b-- + --h-1---- 

6 SQRT(3) 3 

(C36) /* Differentiate the result. l ! 
DIFF(%,X); 
Time= 67 msec. 

2 2x+1 1 
(~36) ---IIc--l-------- - ---..----d-----f + ---v--v- 

2 3 (X - 1) 
(2 x + 112 6(X +X+1) 

3 (--"+---- + 1) 
3 

(C37) I* Macsyma does not automatically simplify its results so we 
must tell it to do so. */ 
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RATSIMP ; 
Time= 79 msec. 

(D37) 
X 

-- 
3 

X -1 

(C38) X*SIN(XH%E+*X+*2+1/LOG(X); 
Time= 28 IUSCC. 

2 
1 x 

(D38) X SIN(X) + - + %E 
LOG(X) 

(C39 1 INTEGRATE(%,X) ; 

RISCR FASL DSK MACSYM being loaded 
Loading done 

PFRAC FASL DSK MAXODT being loaded 
Loading done 

ERF FASL DSK MAXOUT being loaded 
Loading done 

RPART FASL DSK MACSYM being loaded 
Loading done 
Time= 2488 msec. 

/ 
1 1 SQRT(%PI) %I ERF(%I X) 

(D39) I ____I- dX I_ ------- ---- + SIN(X) - X CO?.(X) 
1 LOG(X) 2 
I 

I* In the above example Macsyma was unable to integrate the first tetm 
in which case it simply inserts an integral sign in front of the 
the integrand. ERF denotes the error function. l / 

I* To gain more space it was necessary to restart Macsyma fox the next demo. 
Thus the command numbers recycle. l / 

(CY) /* Assign an expression to the variable Fl. */ 
Fl: SIN(X) /X; 
Time=: 14 msec. 

SIN(X) 
(D91 --- 

X 

(Cl01 /* Now we demonstrate a simple graphics capability of Macsyma on a 
character display. It would look nicer on a graphics display, 
but the important point here is not the aotual display on a 
character terminal but the fact that such capabilities are 
integrated into the system in a natural way. *I 

PLOTNUEI : PLOTNWl : 50 $ 
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Time= 3 msec. 

(Cl11 PLOlWFl,X,-12,121; 

APLOT FASL DSK SHARE being loaded 
Loading done 

TJZKPLT FASL DSK SHARE being loaded 
Loading done 

FFORMA FASL DSK LIBLSP being loaded 
Loading done 

PRINT FASL DSK SHARE being loaded 
Loading done 

. . BFC 10:51:05 Monday, 1st June, 1981 
. ..* 

. 1. . 
.  l .  

.  .  .  .  

.  .  .  .  

.  .  l 

.  .  .  .  

.  .  .  .  

.  .  l 

.  l .  .  

.  .  .  .  

.  .  .  

l . ,  .  

l .  .  .  .  l .  .  .  .  .  .  .  .  

l * .  .  .  .  .  l * .  .  

.  .  .  .  .  .  .  

l .  .  .  

-0. ; :  

.  .  .  .  

Xmin = -12 Xmax = 12 Ymiu = -0.3 Ymax = 1 

Time= 1909 msec. 
(D1.1) DONE 

(C12) INTEGRATE(Fl.X.-INF,INF); 
Time= 7507 msec. 
(D12) %PI 

The above examples display only a few of the facilities available in sys- 
tems such as Macsyma and Reduce [HEM711. There have been dozens of computer 
algebra systems developed in the past fifteen years. Fox a directory of some 
of the best-known and most widely available in the U. S. see the appendix. 
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Computer algebra systems have been used in hundreds of applications 
including pure mathematics, celestial mechanics. general relativity, high 
energy physics, NMR imaging, economics, acoustics, computer-aided design, 
design of VLSI circuits, fluid mechanics, fracture mechanics, helicopter blade 
motion, ship hull design, underwater shock waves plus many others. For infor- 
mation on various applications see [PRFSl, LRWV79, JRNR76, NASA77, NGEW79, and 
WANPSll . 

The success of today’s systems has been made possible by important 
improvements during the last decade in many fundamental computational algo- 
rithms plus the discovery of algorithms fox some problems such as indefinite 
integration where no algorithm was previously known. Important progress has 
been made on gcd computations, factoring, resultant computations, simplifica- 
tion, integration, and solution of ordinary differential equations in closed 
form. Most of the important papers on algorithmic advances can be found in 
the proceedings of various ACM SIGSAM symposia [WANP81, NGEW79, JRNR76, 
PETS711. Some notable exceptions are papers on integration by Risch IRISR69, 
RISR701, the book by Davenport [DAVJSll, Singer’s paper [SINM811 on solving 
nth order homogeneous ordinary differential equations in closed form, Gosper’s 
paper [GGSR781 on summation of series, and the works of Musser EMlJSD751, Wang 
[WARO75, WANP781, Yan [MOYU73, YUND741; Zassenhaus IZASH693, and Zippel 
1ZIPR791 on polynomial factorization. The paper by Yun and Stoutemyer 
[YUSTSOI gives a good survey of many aspects of algebraic computation. 

In the future we will see continued progress on new algorithms, continued 
progress on system development, and the appearance of powerful scientific 
workstations using the personal computers currently appearing on the market 
with integrated numeric, algebraic and graphics software. 

3. CONCLUSION Dramatic advances are being made in scientific computation 
today. By the year 2000, or perhaps sooner, the scientific computation world 
of the average scientist or engineer will be significantly changed. Essen- 
tially all the known mathematical computational methods used with pencil and 
paper today will be programmed into personal workstations. putting the best 
and latest techniques at the fingertips of each technical worker thereby giv- 
ing him or her the ability to routinely solve problems that they were previ- 
ously unable to do because of a lack of personal knowledge, computing power, 
ox both. Previously solvable problems will be doable in a fraction of the 
scientist’s time required today thereby tremendously increasing the produc- 
tivity of all technical researchers. 

Indeed many of these promises are here today. Some laboratories have 
already made algebra systems available to their employees. The Navy has set 
up a network fox the use of Macsyma. Other organizations are planning to make 
algebra systems available or are expanding current facilities while others are 
just beginning to realize their great potential. This author believes that 
nothing short of a revolution.in scientific computation is underway! 
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APPENDIX 
A Directory of Some Computer Algebra Systems 

For a more complete directory see the article “Symbolic Mathematical Com- 
putation ” by David Yun and David Stoutemyer [YUST801. 

ALDES/ SAC-2. A highly portable, batch system with a growing list of 
facilities. Detailed and accurate documentation. Available from 
Prof. G. E. Collins, 1210 W. Dayton St., Department of Computer 
Sciences, Univ. of Wisconsin, Madison, WI 53706. 

ALTRAN. A highly portable, batch system restricted primarily to 
rational function and truncated power series computations. 
Excellent documentation and error diagnost’ics. Available from the 
Computing Information Library, Bell Laboratories, 600 Mountain Ave., 
Murray Hill, NJ 07974. 

MACSYMA. The most extensive of all the computer algebra systems. Runs 
interactively under ITS on a PDP-10, under MULTICS on a Honeywell, and 
under Eerkeley UNIX on a VAX. Also available via the ARPA net. For 
information contact Prof. Joel Moses or V. Ellen Golden, MIT Laboratory 
for Computer Science, 545 Technology Sq., Cambridge, MA 02139. 

muMATH. A microcomputer algebra system intended for educational and 
personal use. Commercially available from The Soft Warehouse, P.O. 
Box 11174, Honolulu,‘Hawaii 96828. 

REDUCE. A portable, interactive system with many facilities. Has been 
used for many applications, mostly in physics. Documentation weak. 
Available from Dr. A. ‘C. Hearn, Rand Corp., 1700 Main Street, Santa 
Monica, CA 90406 l 

SCRATCHPAD. An interactive system under development at IBM Research. 
Has many facilities. For information contact Dr. R. D. Jenks or 
Dr. D. Y. Y, Yun, IBM T. 5. Watson Research Centex, P. 0. Box 218, 
Yorktown Heights, NY 10598. 
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NUMERICAL SOFTWARE FOR FIXED POINT MICROPROCESSOR APPLICATIONS 
AND FOR FAST IMPLEMENTATION OF MULTIGRID TECHNIQUES 

Steve McCormick 
Department of Mathematics 
Colorado State University 

Fort Collins, Colorado 80523 

ABSTRACT. The first part of this paper will describe the considerations that 
must b:! made for the development of numerical software routines for limited environ- 
ment microcomputer evaluation of elementary functions. Though the presentation has 
broader implications, it is assumed that the target microcomputer is a single chip, 
binary,, fixed point, truncated arithmetic, and short wordlength device. The applica- 
tion is assumed to demand a real-time, dedicated, special purpose device. The main 
feature of this part of the paper is guidelines recommended for software development 
in such an environment. 

The second part of the paper will describe a very simplified viewpoint of 
multigrid methods as single grid directional minimization algorithms for variationally 
posed problems. This viewpoint leads to very simple, broad convergence theory, but 
the purpose of this talk is to describe how it can be exploited to develop test code 
for multigrid application. More specifically, this viewpoint suggests a means for 
modifying existing relaxation routines. in order to produce a multigrid simulator. 
Such modifications involve only the relaxation process, can be implemented in a 
surprisingly small amount of code, do not increase storage requirements nor impact 
the data structure, and eliminate the need to determine the fine-to-coarse grid 
transfer operator and coarse grid equations. Though somewhat less efficient than 
the usual multigrid code, it offers a very quick way of applying multigrid to perhaps 
a very large and complex existing software package. Included in the talk is a descrip-. 
tion of a routine for solving general two-dimensional elliptic boundary value problems 
on a rectangle. It was implemented in BASIC on a Hewlett Packard 9845 in about sixty 
lines of code. 

1. NUMERICAL SOFTWARE FOR FIXED POINT MICROPROCESSOR APPLICATIONS. The first 
part of this paper concerns the task of implementing numerical software in a very 
limited microprocessor environment. The focus is on guidelines for development of 
software for elementary function evaluation. These guidelines have evolved during 
a research project initially supported by the National Science Foundation and later 
by the U. S. Army.Research Office. It is the culmination of,the effort headed by 
G. Taylor, M. Andrews, and the author. Since a detailed report [l] and several 
research papers [2]-[6] were published containing the details of this subject, we 
merely paraphrase the introduction of [1] for our purposes here. 

The report focus on numerical methods for limited environment microprocessor 
implementation: the target microprocessor is assumed to be a si?zgZe chip, binary, 
fixed point, tnozcatkd arithmetic, short wordlength (16-bit or less) processor; and 
the application is assumed to demand a real-time, dedicated, speciaLpurpose device 
(as opposed to an application-detached general purpose computer system) and requires 
nem fuZZ machine accuracy. 

The main objective of the report is to present guidelines for the development 
of software routines for evaluation of elementary functions. There is essentially 
no reference to sources for acquiring existing software because such sources are 
apparently nonexistent, although some sources seem to be on the horizon. 
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Narrowing the subject to elementary functions was essential. Although brief 
comments are made that relate to the implementation of other numerical tasks such 
as Fast Fourier Transforms, eqlicit computational problems (e.g., transforms, 
matrix multiplies, and polynomial evaluations) represent too broad of an area to 
treat in such a report. Moreover, except for function evaluation, there is generally 
too little known about solving impZicit problems (e.g., inverse transforms, matrix 
equations, and differential equations) in short wordlength fixed point arithmetic. 

Even with the focus limited to elementary functions, there are certain diffi- 
culties. First, existing and future microprocessors and applications are markedly 
diverse in nature. Tradeoffs for accuracy, speed, system resource usage, and 
reliability are complex and must be considered carefully for each development under 
design. Second, there is much controversy surrounding predictions of the future of 
microelectronics which complicates the task of presenting guidelines for design. 
Third, there is a great variety of algorithms and forms of algorithm implementations 
available. General recommendations are therefore difficult to make, Fourth, there 
are many alternatives to machine language or microprogramcd implementation of 
numerical algorithms including table look-up, existing numerical processor chips, 
and special chip design with hardwired computation. 

These difficulties dictate two philosophical features evident in the report. 
First, the sample algorithms and implementations are not the best choice for every 
environment, but should prove suitable for most in the limited setting defined 
above. General comments and suggestions are made where apprcpriate so that one can 
view the sample algorithms as illustrations of the general concepts. The second 
feature is that the suggestions represent what can be done by implementing numerical 
function evaluations in s0ftid2l~. The report makes only brief reference to the 
trade-offs with respect to the other alternatives. Thus, the comments should be 
viewed as tools for system design that can be considered along with other alterna- 
tives in light of the specific application. 

Though the choice of software implemented function evaluation is left to the 
decision of the reader, there are some apparent recommendations made in the report. 
Perhaps the future will involve numerical algorithms implemented in customized 
hardwired chip designs , in chips programmed during the last stages of fabrication, 
for example. For such implementations, the guidelines in the report would, in fact, 
be relevant for designs based upon these alternatives, But for the present, the 
main competitors to software implementation are table look-up and floating point 
chips. The sample algorithms presented in the report can be implemented in very 
compact mode (50 or 60 words are typical), which may in some cases be implemented 
on the processor chip itself, and executed at a speed equivalent to at most a few 
fixed point multiplies/divides. (Note that multiply/divide may be hardwired or 
softwired, depending on the host processor.) This is significantly faster than 
existing floating point chips, although the speed gap will narrow dramatically with 
the introduction of faster floating point processors. Of course, the longer word- 
length floating point chips provide greater potential accuracy, Nevertheless, 
software implementation may be somewhat cheaper, although program development costs 
must be accounted for, and should require less hardware complexity. On .the other 
hand, table look-up is certainly faster than either alternative and attractive when 
memory demands permit. In a loose sense, then, software implementation dominates 
16-bit applications while the table look-up and floating point chip alternatives 
are more competitive in shorter and longer wordlength applications, respectively. 
The trade-offs between table look-up and software implementation for B- and 16-bit 
microprocessors is exemplified by the square root function treated in [2], 
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2. NUMERICAL SOFTWARE FOR FAST IMPLEMENTATION OF MULTIGRID TECHNIQUES. 
There are several algebraic interpretations of multigrid methods for general matrix 
problems. (See [7] for example and the references cited therein.) For symmetric 
variationally posed problems, a very useful algebraic point of view is developed by 
considering the coarse grid computations as they effect the fine grid approximation. 
In fact, this viewpoint can be exploited [8] to achieve a theory including rigorous 
and sharp rates of convergence under very general conditions. However, the purpose 
of this second part of the paper is to describe how this viewpoint provides for a very 
fast and simple method of implementing multigrid in software. More precisely, this 
point of view defines a method that is theoretically equivalent to multigrid. Though 
computationally less appealing, it can be implemented with minimal design effort and 
in very short code, and does not involve much impact on an existing software package 
that is being modified for multigrid application. We begin by defining this method, 
which we suggestively call unigrid. (See [9] for more details.) 

For focus, suppose A is an n x n real, symmetric, positive definite matrix. 
With f in Rn, then the problem is to find u in Rn satisfying 

(1) Au = f. 

Many iterative methods for solving (1) can be described as directional iterations in 
the following sense. With an approximation, U, in Rn to u (such approximations will 
always be represented in capitals), then a direction d in Rn is computed (the choice 
of direction d defines the-method) and used to update U in such a way that the new 
residual error is orthogonal to d. More precisely, let r = AU - f. Then an iteration 
with direction d is given by 

(2) U+U-sd 

<r, d> 
' = cAd,d> - 

Here we use the arrow to denote replacement, thereby avoiding the use of subscripts 
for iteration indices. We write (2) in the compact form 

(3) u + Gd(u). 

One sweep of Gauss-Seidel applied to (1) can be written as several iterations 
in (3) with directions d = el, e2, . . . . en, where ei is the i-th column of the n x n 
identity. Suppose for definiteness that A represents a uniform grid discretization 
of a one-dimensfona;! elliptic boundary value problem on a finite interval with 
Dirichlet boundary conditions. Then vectors in Rn are thought of as vector functions 
of the interior grid points so that ei is the vector function that is zero everywhere 
except at the i-th grid point (where the grid points are numbered, say, lexicographi- 
tally). It is not difficult to see that these spiked directions do not reduce the 
error 

(4) E=U-u 

very well. More precisely, the "oscillatory" (cf. [7]) error components are quickly 
reduced, but the "smoother" ones are not. The natural suggestion then is to also use 
smoother directions. 
df recursively by 

To this end, suppose for simplicity that n = 2m - 1 and define 

dm = 

(5) 
j ej, ' l<i~2~-1 - - 

dk = &k+l + &k+l + l+,k+l l<i<Z k 
. * 

(These directions are ~ctu~l~~-:nte~d~~ 

* 9 -l,l<k<m. 

for4u:L+Lith one-dimensional problems for which 
(1) is a discretization. Higher dimensional versions can be defined by combinations 
analogous to (5).) 
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These directions are progressively smoother with decreasing k. Note that di is 
the tent function centered at the midpoint of the interval. 

With these directions, one cycle of unigrid on "level" m is now defined recur- 
sively in terms of parameters v, v by 

Level 1 cycle: Perform one iteration via U + C #). 

Level k cycle: Perform v sweeps on directions d: where one sweep is 

to do U + Gdk(U) for i = 1, 2, . . . . pk - 1. Now 

i 

perform or cycles on level k - 1. 

The conventional multigrid method is a delayed displacement process of 
updating the fine grid approximation U after many computations are performed on 
coarser levels m - 1, m - 2, ..", 1, Though it would be computationally more 
expensive, an immediate displacement multigrid process would correct U (and 
compute the coarse grid equations) whenever any coarse grid approximation update 
is made. A somewhat subtle analysis shows that both of these methods are in fact 
eauivalent: it is verv easv to see that immediate replacement, and hence con- 
ventional,-multigrid \s fully equival 
grid transfer operator I"f in terms of 

(6) 

nt to unigrid if we define the fine-to-coarse 
the coarse-to-fine operator If as 

ET r I 1; = Ic 

and if the coarse grid operator, AC, 
Af .as 

(7) 

s defined in terms of the fine grid operator 

P c 
A, = IpfI;. 

(For the finest level m, Af = A.) For the way in which we have defined unigrid, 

If is linear interpolation although any reasonable interpolation process can be 

employed. We call (6) and (7) the variationczi! conditions because they are 
naturally satisfied by finite element-type discretizations of (1). 

We have described a version of multigrid designed for one-dimensional discre- 
tizations. To extend unigrid to higher dimensions, it is simple to define the 
corresponding smooth directions. (Actually they are the interpolants if the 
coordinate functions, ei, from coarse grids.) 

If unigrid is equivalent to multigrid but computationally less efficient, then 
what is its purpose? In addition to analytical simplicity which leads to a very 
simple theory [8], unigrid is very easy to program. In fact, to modify an existing 
possibly very complex software package (say one that solves a complex system of 
time dependent equations) that presently implements Gauss-Seidel (or SOR or some 
other relaxation scheme), it is enough to modify the relaxation routine. Thus, 
design involves only computing the direction (which is equivalent but somewhat 

simpler than defining I:). Implementing unigrid does not require defining any 
other grid transfer operators, scale factors, or coarse grid equations. Implemen- 
tation of the design principles (:6) and (7) is automatic. Moreover, unigrid does 
not impact the software data structure. If the directions are generated each time 
they are used, then no coarse grid information is stored. Finally, many algorithm 
variations can be implemented and tested much more quickly and safely than with 
conventional multigrid. Once the design is completed, this multigrid "simulator" 
may be replaced by a careful implementation of conventional multigrid with the 
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confidence that a good design was achieved and with the ability-to use unigrid as 
a benchmark to ensure the correctness of the final product. 

To illustrate the simplicity of unigrid, we include the li tings of a code 
for solving 8 

.I' 
,F 

-Au t eXtYu = sin 3(x f y) in n = (0, 3) x (0, 2) 
(8) 

u = cos 3(x + y) on an. 

It was programmed in BASIC on an HP9845 and uses the usual five-point discretiza- 
tion on the fine grr'd (although, because of (6) and (7), it simulates nine-point 
stencils on coarser grids). To apply unigrid to a more general operator in (8), 
simple changes should be made to statements 210 and 350-380. 

The cycling scheme is very simple (not as defined above). This can be seen 
in the sample runs which are also included in this paper. Note that level 1 denotes 
the finest level, that is, where Gauss-Seidel sweeps are performed. Note that the 
performance is the-same for h = .25 as it is for h = .125. 

Modifications to unigrid can be made very quickly. We have many versions now 
in use for research purposes and are continuing to develop others for further 
study (e.g., for different cycling schemes, relaxation processes, and orderings, 
nonlinearities, eigenproblems, irregular boundaries, nonsymmetric and/or nonpositive 
definite operators, and more general problems). No version has taken more than an 
hour (and usually just a few minutes) to produce. 
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40 DI?F “# ;: PIrJtITS, I tICL l BOUNDARY PO1 NTS” ; 
58 ItIPUT I1 
60 DISP In’,’ pljIfjT*!;“; 
78 INPUT 11 
80 DISP “II”; 
96 INFLIT H 
100 DISP ” # R E L Q :A: fi T 1 [I 1.4 i: ” ; 
110 INPUT NO 
120 DISP “C’OtIVERGEtIC E TOLERHNCE”; 
136 INPUT T 
140 DISP “MFtX # C:YCLEc;“; 
150 INPUT Cl 
160 PEItIT I’ # G F: 1 11 ‘i. = ” : I,4 ; ” #:-: POINTS=“; 11; ” #Y POINTS=“; Jl; ” H=“;H 
170 PRItrT “# F:ELH::ATIOt-IS=“; NO; ” CONVERGENCE TOL=“; T; ” MAX # CYCLES”; Cl 
180 C:=0 
140 FOR I=1 TO 11 
280 FOR J=l TO Jl 
2113 ~(1, Jj=COScB~rI+J-~jsH) 
220 NE>:T .J 

230 NEXT I 
248 c:=c+i 
250 FOR t<=l TO N 
2 6 Cl t-1 1 ?z 2 .-. 0: 11 - c; j 
2 7 0 F 0 F: 14 :> = 1 T 0 t-4 0 
280 E-O 
230 FCIF 1=1+1?1 TO Ii.-Ml STEP Ml 
300 FOR .T=l+Ml TO Ji-Hi STEP Ml 
318 Al=8 
320 R1=0 
338 FOR IC:=I-Hl+l TO I+Ml-1 
348 FOR J3=J-Ul+l TO J+lll-1 
350 D=~+E;:.~P~~I~+J~-~~I~~~~H*H 
360 fi=K~*uiI:i, J~;I-I~~~I:~,J.~-~)-U(I~,.T~+~~-U~I~-~, J3>-U(I3+1,J3> 
370 R=K-SIN(3*~:13+.J3-Zj~Hj~H~H 
380 H~=~~F~~~KI~I~,J:~~~~-F~~~U(I~, J3+1>-FND(I3, J3-I)-FNDCI3+1, J3>-FNDCI3-1, J3Z’ 
338 Rl=Rl+FND~IS, .J3j*R 
400 fil=Hl+FND( 13, JJ)+H3 
410 NEXT 53 
420 NEXT I3 
430 S=Pl fii 
448 E=E+F’l+F’l 
450 FOR 13=I-Ml+1 TO I+Ml-1 
4150 FOR J5:=J-1’11+1 TO .r+Ml-1 
470 lJ( 13, J:~:J=IJ<: 13, J’;: j-S*FND< 13, J3> 
480 NE’JT , I 53 
490 NEXT I3 
500 NEXT .r 
518 NEXT I 
5213 E=SQF:(E.T,:Mid-H 
538 F’F:IMT “LEVEL=“; H-K+l;” ERROR=“;E 
5 4 0 N E X T N 3 
550 NEXT K 
560 IF E<T THEN 590 
570 IF C<C 1 THEN 240 
588 DEF Ft~D~I3,.J3~=~M1-HESCI-I3~~*~Hl-~B~~J-J3>~~~til*~ll~ 
590 END 

UNIGRID LISTING 
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LEVEL= 3 
LEVEL= 3 
LEVEL= 3 
LEVEL= 2 
LEVEL= 2 
LEVEL= 2 
LEVEL= 1 
LEVEL= 1 
LEVEL= 1 
LEVEL= -3 
LEVEL= ,3 
LEVEL= 3 
LEVEL= 2 
LEVEL= 2 
LEVEL= 2 
LEVEL= 1 
LEVEL= 1 
LEVEL= 1 

LEVEL= 4 
LEVEL= 4 
LEVEL= 4 
LEVEL= 3 
LEVEL= 3 
LEVEL= 3 
LEVEL= 2 
LEVEL= 2 
LEVEL= 2 
LEVEL= 1 
LEVEL= 1 
LEVEL= 1 
LEVEL= 4 
LEVEL= 4 
LEVEL= 4 
LEVEL= 3 
LEVEL= 3 
LEVEL= 3 
LEVEL= 2 
LEVEL= 2 
LEVEL= 2 
LEVEL= 1 
LEVEL= 1 
LEVEL= 1 

# :.-: p il I I I T ‘1. : 2 s #‘I’ POINTS= 17 H= -125 
ij 1.4 5. = .> C: 0 N ‘c’ E I? G E N C E T 0 L = 0 N’IHX I CYCLES 2 

309 



ACKNOWLEDGEMENTS. Both parts of this paper describe projects that were 
joint efforts with other researchers. For the microprocessor software, recog- 
nition is due M. Andrews, G. Taylor, D. Pryor, B. Eisenberg, and D. Jaeger. The 
unigrid developments were in collaboration with J. Ruge. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

REFERENCES 

S.McCormick, D.Pryor and G.Taylor. "Numerical software for fixed point 
microcomputer applications", U.S.A.R.O. report, November, 1980. 

M.Andrews, S.F.McCormick and G.D.Taylor. "Evaluation of functions on micro- 
computers: square root', Comput. Math. Appl. 4 (l979), pp. 359-367. 

M.Andrews, B.Eisenberg, S.F.McCormick and G.D,Taylor. "Evaluation of functions 
on microcomputers: rational approximation of kth roots", Comput. Math. Appl. 
5 (1979), pp. 163-167. 

M.Andrews-, D. Jaeger, S.F.McCormick and G.D.Taylor. "Evaluation of functions on 
microcomputers: exp(x)", Comput. Math. Appl., to appear. 

M.Andrews, D-Jaeger, S.F.McCormick and G.D.Taylor. "Evaluation of functions on 
microcomputers: in(x)", Comput. Math. Appl., to appear. 

M.Andrews, D.Jaeger, S.F.McCormick and G.D.Taylor. "The microcomputer numerical 
software project at CSU", Proc. Second Rocky Mtn. Symp on Microcomputers: 
Systems, Software, Architecture, August, 1978, pp. 2541263. 

S.McCormick. "An algebraic interpretation of multigrid methods", submitted. 

S.McCormick and J.Ruge. "A general theory for variational multigrid", in 
preparation. 

S.McCormick and J.Ruge. "Unigrid: A multigrid software simulator", in 
preparation. 

310 



Anthony I’. Parker1 

Kim A. Sleeper’ 

Christopher P. Andrasicl 

ABSTRACT. After firing a limited number of rounds, a gun tube may 
develop multiple radial cracks emanating from its boundaries. These 
cracks grow under the cyclic pressurization due to firing until they 
reach a critical length, at which stage catastrophic brittle failure may 
occur. The fundamental safety requirement is that a tube be withdrawn 
from service before such failure. 

In order to reduce ,thc rate of crack growth, it is common practice 
to induce compressive, residual stresses at the bore of a gun tube by an 
autofrettage process which involves suitable pressurization or swaging 
during manufacture. 

In this paper, we describe the numerical solution of a range of 
problems encountered in the safe-life design of a gun tube, namely: 

a. The prediction of residual stress fields arising from full 
or partial autofrettage. 

b. The correction of these stress fields to account for the 
non-ideal, Bauschinger effect on unloading of the tube during 
manufacture. 

C. Prediction of crack tip stress intensity factors for 
multiple cracks in pressurized, autofrettaged barrels using the 
modified mapping collocation method. 

d. Calculation of gun tube lifetime using stress intensity 
factor data and a fatigue crack growth law. 

Finally, some outstanding problem areas are note-d, and possible 
numerical techniques are proposed for their solution. 

1. INTRODUCTION. Fatigue crack growth arising from the cyclic 
pressurization of thick cylinders can produce a regular array of up to 
50 equal-length radial cracks emanating from the bore [l]. A knowledge 
of the crack tip stress intensity factor, K is necessary in order to 
prcd.ict the fatigue growth rate and critical length of such cracks. 
Several solutions are available for the case of a cracked, pressurized 
thick cylinder [l-6]. It is likely that the most accurate of these 
solutions are those derived by use of the Modified Mapping Collocation 
(MMC) method, These include the solution in reference [S] for up to 
four internal or external radial cracks, and that in reference [6] for 
up to 40 internal radial cracks. The errors associated with the MMC 
technique are generally estimated as being less than 1%. 

1. Materials Branch, Royal Military College of Science, Shrivenham, 
SN6 8IA, UK 

2. Army Materials 6 Mechanics Research Center, Watertown, u9, 02172 
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TO inhit)it f;itiguc growth of internal cracks it jS COlllJnOll practice 

to produce a more advantageous stress distribution involving residual 
compressive hoop stresses near the bore, by autofrettagc treatment of 
the cylinder prior to use [7]. K solutions exist for a multiply-cracked 
fully autofrettaged (100% overstrain*) tube [6], [S]. Reference [6] is 
an MJ1C solution. Ilowever, the optimum autofrettage condition may not be 
100% overstrain [7] since fatigue cracks may develop at the outside 
radius as a result of the relatively high tensile residual stress. 
Clearly, the choice of the optimum overstrain condition will involve a 
consideration of the rates at which external cracks will grow radially 
inwards, and the rates at which internal cracks will grow outwards. In 
each case, prediction of crack growth rate, critical crack length and 
residual strength will depend on a knowledge of the crack-tip stress 
intensity factor. The designer requires accurate stress intensity factors 
for both internally cracked and externally cracked tubes with internal 
pressure, and any amount of autofrettage from zero to 100% overstrain 
(full autofrettnge). 

Life prediction is normally based on the stress intensity factor 
calibration and an associated empirical crack growth law [9]. However, 
there is evidence to suggest that life predictions based on the K values 
obtained from 'ideal' autofrettage distributions may significantly 
overestimate the life of a given tube [lo]. One possible explanation 
for this is the Bauschinger effect [ll], which is evident when certain 
materials are loaded in compression after initial tensile loading, this 
causes a reduction in the 'ideal' residual stress field following autofrettage. 

Each of the above aspects is considered, with particular emphasis 
on the numerical solution of a number of problems encountered in gun 
tube life prediction. 

2. TIjE BAUSCHINGER EFFECT. In determining the residual stress 
field in a thick cylinder which has undergone plastic deformation it is 
normal to assume an elastic/perfectly plastic stress-strain curve of the 
form illustrated in Fig. l(a). This behaviour implies the same magnitude 
of yield stress, Y in tension and compression. However, the stress- 
strain curve for certain gun steels may be of the form illustrated 
schematically in Fig. l(b). The significant features of this 'real' 
behaviour are: 

a. A small amount of plastic strain-hardening (slope 6) typically 
a strain hardening exponent of 0.05. This may alter the residual 
stress field by 4% [1_7]* 

b. A very small modification to the residual stress field of 
approximately 1% as a result of compressibility of the material 
[I 31. 

C. There is a significant Bauschinger effect [ll], i.e. the yield 
stress in compression is less than that in tension. 

* Overstrain is the proport ion of the cylinder wall thickness that is 
during the autofrettage process. subjected to plastic strain 
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cl, ‘1’11~ shape of the unloading portion of the curves (CD and 
C’l)’ ) is unchanged with differing amounts of plastic flow 
within the plastic strain limits employed in the production 
of gun tubes. 

For the purposes of this paper, the ‘typical’ behaviour illustrated 
in Fig. l(b) is modelled as a series of straight lines, with zero strain 
hardening, and a yield strength in compression of (-oY), Fig. l(c). 

3. THICK CYLINDER THEORY. Consider a tube, internal radius a 
external radius b, which is subjected to an internal pressure p, Fig. 2. 
The distribution of hoop (a,) and radial (ur) stress in this case is 
given by Lame’s equations as: 

% 
= ii!- 1 + b* 

b2-a2 [ 1 7 
113 

a r 

where r is the radius at which the stress is defined. 

Assuming elastic-perfectly plastic material properties, and plane 
strain conditions, employing Tresca’s yield criterion, but omitting the 
analysis, the pressure p* to cause yielding of the tube out to a radius 
r=c -(Fig. 3) is given by [I 1) : 

Y p* = Y Rn (c/a) + - 
2b2 

(b*- c2) (21 

where Y is the uniaxial yield stress for the material. This will give 
directly the pressure for initial yielding at the bore, pi: 

Y p; = - 
2b2 

(b2-a2) (3) 

and the pressure for complete yielding of the tube, p*: 
Y 

5 = y Iln Cb’a) (4) 

If the cylinder is subjected to a pressure p*, [p; < p* < p;] , 

there will be partial yielding of the tube out to a radius c, Fig. 3. 
The hoop stresses produced by this pressurization are: 

“e* = -p* + Y (1 + En (r/a)) 

I 

a< r< c - - a* = -p* 
x + Y Rn (r/a) 
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Y2 
?I* =- 2b2 

Yc2 
%' =- 2b2 

c<r<b - - 16) 

If the pressure p* is subsequently removed completely, assuming 
that the unloading is entirely linearly elastic, with no reversed yielding 
(valid provided b/a -C 2.22), the residual hoop stress distribution, 

R 
% ' is given by 111): 

R 2 

% 
= -p* f Y (1 + Ln (r/a)) - P*a 

(b*- a2) 

OR r = -p* + Y n (r/a) - 2 2 f) [d] /““’ (‘I 

R 

-[ 

Yc2 
2 

Ji!T5- 1 - b2 
0 r 2b2 I[ 1 b2-a2 T.2 

c<r<b - - 

Clearly, a re-pressurization of the tube to a pressure pep* will produce 
a stress distribution which may be calculated by the addition of (7) 
and (1) for r< c, and (8) and (1) for rz c. - 

Assuming a reduced compressive yield strength of (-oY) as a result 
of the Bauschinger effect, there is now the possibility of reversed 
yielding outwards from the bore to a radius d, Fig. 4. In the region of 
reversed plasticity the stresses are: 

% 
= -aY (1 4 Rn (r/a)) 

I 

a<r<d (9) - - 
u r = -clY an (r/a) 

which satifies the two requirements that or=0 @ r=a and Tresca's criterion, 

namely u a =-uY, a < r c d. 0 r - - 

Consider now the elastic region r > d. As a result of unloading 
and yielding the elastic-plastic interfyce at r=d experiences an additional 
radial stress ur (=-p), given by equation (9) minus equation (5), thus: 

-p =.u r I 
= p* - (1 + a) Y Rn (d/a). 00) 

r=d 
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~l’hus rhc stresses in thcelastic region are composed of (5) and (6) plus 
some additional pressure p applied at r=d as a result of unloading and 
reversed plasticity. 

If there is reversed yielding on unloading out to a radius d (dcc), 
material at any point r>d will see the combination loading and yielding 
as the application of an additional pressure p at radius d, such that 

d2 l+b 2 

% = p b2 
- [ 

d2 7 I d<r<b - - 
d2 1 - b2 CJ r = p b2-d2 [ 1 7 

(11) 

The requirement fox the outer region d 2 r < c is that at red 

it is just yielding. The total stresses o: and f given by the super- 

position of (5) and (11) are: 

T d2 l+b 2 

“e = p b2 d2 -[ 1 7 
-p* + Y (1 + an (r/a)) 

d < r c c (12) - - 
T d2 

‘r =P- 
b2-d2 

-p* + Y Rn (r/a) 

But we know that Tresca’s criterion applies, thus: 

(0 
T T 
0 - UT) = -aY @ r=d 

and from (12) and (133 

d2 

-aY = ’ + ’ b2-d2 

2b2 

dz 

(13) 

(14) 

But the interface pressure is given by equation (10). Thus, combining 
(10) and (14) : 

+ En (d/a) 1 (15) 

Substituting from (10) into (12), recognizing that p = -or 

I 

: 

r=d 
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I 

1‘ 

'6 = - {p* - (1 + a) Y fn (d/a))- 1 -p* + Y (1 + Ln (r/a) 

cl7 d2 1 - b2 
T = - {p* - (1 + a) Y Rn (d/a)} - 

b2-d* [ 1 7 
- p* + Y Iln (r/a) 

(16) 

dc r~ c 

Superimposing (6) and (11) and substituting from (10): 

Yc2 - 
2b2 

- {p - (1 + a) Y kn (d/a)} 

cz rl b (17) 
Yc2 d2 ~ 
2b2 

f {p* - 
b2-d2] 1 

(1 + a) Y Rn (d/a)] - 

Equations (7) and (8) together with (2) define the residual stress field 
after removal of autofrettage pressure when there is no reversed yielding, 
whilst equations (9), (16), (17) together with (2) and (1s) define the 
residual stress field in instances where reversed yielding occuxs. 

For yielding not to occur on unloading: 

(0 -03 0 r I < -OY (18) 
’ F=a 

i.e. from equation (7): 

or in terms of the pressure for initial yielding p;, equation (3), for 

no reversed yielding: 

p* < (1 + a) pz 1201 

For example, consider a cylinder with b/a=2, a=0.5, then from (20), 
for no reversed yielding: 

p* < 1.5 p? 1 

Now since: 

* X I  
Y 

Pi - 
2b2 

(b2-a2) = .375 Y 
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WC ol)taiYl from (23: 

1.5 pf = .5G25Y = Y RTI (;) + !-- (b2-c2) 
2b2 

A straightforward iterative process gives c/a=1.33, thus any overstrain 
in excess of 33% will cause reversed yielding at the bore. 

Clearly, it will also be necessary to iterate on equation (15) in 
order to calculate d. Residual stress distributions for cylinder ratios 
(b/a) of 2.0 and 3.0 are shown in Fig. 5, for 0.25 2 a 2 1.0. 

4. PREDICTION OF CRACK TIP STRESS IKTENSITY FACTORS BY MODIFIED 
MAPPING CmOCA1'1ON (MNC). I- Complex varia"^ble methods, due to Muskhelishvili 
[14] are utilized. Stresses and displacements within a body are represented 
in terms of complex stress functions. By employing an MNC technique as 
described in [S, 15) the cracked ring segment in the physical (z) plane, 
Fig. 6, is mapped from a retangular region in the Y (parameter) plane. 
Traction-free conditions along A'B' and D'E' in the parameter plane are 
ensured. The singularity is removed from the parameter plane by mapping 
a unit semi-circle onto the appropriate crack surfaces, Fig. 6. A 
series representation of the stress function is selected, which ensures 
appropriate symmetry conditions. The stress and displacement boundary 
conditions applicable to the problem in the physical (2) plane are: 

u = 0, T = 0 r r0 over DE and BA 

ue = 0, T re = 0 over EF and AH 

(5 T 0 over FG and HG r = 0, rB = 

% = p(r), Tre = 0 over DC and BC 

where p(r) is equal and opposite to the loading along the crack line in 
the unflawed structure for the case of internal pressure, autofrettage 
or thermal loading, the latter two stress states being essentially 
equivalent [16]. 

In the MMC method the infinite series representations of the complex 
stress functions are truncated to a finite number of terms. Force conditions 
are imposed at selected boundary points along CD, EF, and FG, which 
gives conditions on the unknown coefficients in the stress functions. 
Thus each boundary point produces two rows in the main matrix A, and two 
corresponding elements in the boundary conditions vector 'Lb, where: 

and x is the vector of unknown coefficients. 
of RQx-ows and m columns, 

In general A is a matrix 
where R and m depend upon the number of boundary 

points and unknown coefficients respectively. It was found that conver- 
gence is generally better when 2m c II < 2.5m, this conforms with other 
workers [17]. A least-squares error minimization procedure was used to 
solve the overdetermined set of linear equations. 
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t;no\iing the cocfficicnts for the stress function in the cracked 
region, the crack shape and stress intensity factor, K, may be determined 
in a straightforward manner [14]. In all cases considered there is 
symmetry of loading and geometry about the crack line, the only non-zero 
stress intensity factor being Kl, 

Results for internal pressure in the bore and cracks (each of 
length k) are presented in Fig. 7 for b/a ratio of 2.0. Equivalent 
results for the case of full (100%) ideal autofrettage and steady-state 
thermal stressing appear in Fig. 8. The form of the results at short 
crack lengths is shown in Fig. 9 indicating good convergence to the 
limiting value, Again, the short crack length convergence is good, as 
is that at longer crack lengths. For the particular case of 50 cracks, 
and b/a varying from 1.2 to 2.0, results for full autofrettage are shown 
in Fig. 10. By superposition of these results it is possible to determine 
K for any combination of internal pressure, full autofrettage or steady- 
state thermal loading. Furthermore, provided the crack tips do not 
extend beyond the minimum radius to which plastic flow was induced 
during the autofrettage process, it is also possible to obtain K values 
for partial-autofrettage by a straightforward superposition [l&l. 

A set of results for internal cracks with internal pressure and 50% 
overstrain based on the results of reference [6], and the superposition 
described in [18], is presented graphically in Fig. 11. A further set 
of results for external cracks with internal pressure and 50% overstrain, 
based on the results of reference [S] is presented graphically in 
Fig. 12. 

5. CALCULATION OF TUBE LIFETIME. The prediction of life using 
Linear ElasticFracture Mechanics and a crack growth law is well known 
[91* It consists of defining the stress intensity range AK as: 

AK = Kmax - Kmin 

AK = Kmax 

K min > 0 (21) 

(221 

where K andK max min are the effective maximum and minimum stress 

intensity values respectively during a given loading cycle. Equation 
(22) implies that the part of the fatigue cycle during which the crack 
is closed at its tip (i.e. KI_ 0) makes no contribution to crack growth. 
For much of a component's lifetime, the fatigue crack growth rate is 
related to the stress intensity factor range by [9]: 

dk dN = C(AK) M 
(23) 

where N represents the number of cycles, and C and M are experimentally 
determined constants. In general C and M are also functions of the R 
ratio, where: 
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I{ = Kmin/hma* Kmin > 0 (24) 

However, in this paper we ignore the (relatively) limited effects 
of changing R ratio, and emphasize the effects of the residual stress 
field contributions to K. The question of changing R ratio during 
fatigue crack growth through a residual stress field is considered in 
detail in [19]. Note that there does not appear to be any reason to 
assume that the superposition principle is violated by ‘stress fading’ 
during fatigue crack growth through residual stress fields at stress 
levels which only produce localized (crack tip) yielding [19]. 

Consider a tube containing a residual stress field. When a crack 

is introduced it has a residual stress intensity Kt. The tube is then 

subjected to a cyclic pressure loading. The stress intensity contributions 

produced by this loading are Kf; ‘L and K I , the maximum and minimum 
max min 

values of stress intensity produced by the pressure loading. 

In general we note that equations (21) and (22) give: 

AK = K; - K; 
max min 

L R 

R= 
KImin 4 KI 

L 
KI 

R 
+ KI 

max 

AK = K; + K; 
max 

R=O 

KL R 
Imin + KI ’ O (263 

L 
KI + KI i R 0 (27) 

min 

In order to predict lifetime to failure 
necessary to rearrange equation (23) to give 

a 

/ 

C 

Number of cycles, N = dll 

C(AK)M 

for a gun tube it is 

(28) 

where a. o is some appropriate initial crack length, and Rc is the 

critical crack length at which catastrophic brittle failure will occur. 
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In ~:cncra I , the integral cannot be evaluated cxrlctly and it is necessary 
to integrate in a step-wise fashioh in order to determine total lifetime 
1201. For instance, assuming a tube with internal radius 50mm and 
external radius 1OOmrn containing an array of 40 radial cracks, each of 
length 5mm, we may calculate the lifetime of the tube at working pressures 

of 400, 450 and 500 MNm -2 , for varying amounts of autofrettage from 0 to 

100:. [The material propertics assumed were: Yield strength 1200 MNm -2 

Fracture Toughness 90 MNm- 
3/2 

, Empirical crack growth constants, M=3.1, 

C=1.455 x 10 -11 for crack growth in mrtres/c~~cle] 

The results for this J~articular case arc illustrated as continuous 
lines in Fig. 13, and would load to the initial conclusion that the 
largest possible amount of autofrertage is required. However, this may 
not be the case. The dotted lines on Fig. 13 represent the lifetime for 
an external crack of initial length 0.05mm which grows radially inward 
under the same internal cyclic pressure. Thus, for pressures of SOOMNm -2 

there would be no advantage in exceeding 27% overstrain, since tube 
lifetime is then limited by growth of the external crack. Indeed, any 
increase in overstrain would tend to increase the growth rate of the 
external crack by causing an increase in R value. Whilst the relative 
positions of the lifetime curves in Fig. 13 will vary with material, 
initial crack lengths, working pressures and the nature of the residual 
stress fields, the general approach to the selection of an optimum 
autofrettage overstrain will be the same. 

6. CONCLIJSIONS AND FUTURE WORK - ,,.-- 

a) The residual stress field in an autofrettaged gun tube may be 
calculated exactly by assuming a simple Bauschinger effect model which 
accounts fox a lower magnitude of the yield strength in compression than 
that in tension. Future work should address the problem of modelling 
the non-linear unloading effects which accompany this reduced yield 
strength. 

b) The modified mapping collocation (MMC) method produces accurate, 
two-dimensional stress intensity factor solutions for the case of a 
cracked, internally pressurized tube with autofrettage. Of particular 
note is the accuracy of the selected MMC technique at short crack lengths, 
wherein lifetime estimates are most critical. A straightforward super- 
position allows these results to be extended to the case of partial 
autofrettage. Future work should include the proper representation of 
three-dimensional cracked configurations (e.g. thumbnail cracks). 

cl Gun tubes may develop an array of multiple cracks. Future work 
should be aimed at understanding the factors influencing the stability 
of such patterns, and the effects of residual stresses on such stability. 

d) Crack growth rates due to the cyclic pressurization of gun 
tubes may be predicted from a knowledge of the crack tip stress intensity 
factor range. The optimum autofrettage condition may not be 100% overstrain, 
since external cracks may grow inwards and produce failure. Life prediction 
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design curves may be generated which permit a selection of the optimum 
autofrettage condition. Whilst crack initiation time for internal 
cracks is effectively zero, there is a definite initiation period for 
external cracks. This initiation time should be quantified to allow 
accurate lifetime design predictions. 
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Figure 1 : Elastic-Plastic Stress-Strain Curves. 
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Figure 2 : Internally pressurized Figure 3 : Internally Pressurized, 
Thick Cylinder. Partially Plastic Thick Cylinder. 

b 

Figure 4 : Unpressurized, Autofrettaged Thick Cylinder 

With Reversed Yielding. 
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GUN TUBE FATIGUE LIFE ESTIMATES- 
INFLUENCE OF RESIDUAL STRESS, CRACK GROWTH 

LAW AND LOAD SPECTRA 

Donald M. Neal 
Anthony P. Parker 

Edward M. Lenoe 
US Army Materials and Mechanics Research Center 

Watertown, Massachusetts, 02172 

ABSTRACT. A gun tube should be withdrawn from service before 
crack-like defects within the tube can achieve a critical length and 
cause catastrophic brittle failure. The objective of this study is to 
conduct 3 sensitivity analysis of the relative importance of fracture 
toughness, yield strength, proportion of autofrettage, initial crack 
length firing pressure and crack growth law parameters in the determination 
of safe life estimates for gun tubes. By recognizing the importance of 
the individual parameter in the life prediction procedure, requirements 
for accurate determination of the parameter can be established. 

The Monte Carlo method was applied in order to simulate parameter 
variability in the life,time estimating process. A normal distribution 
function was assumed where a specific coefficient of variation (C-V.) described 
the relative amount of variability. The largest dispersion in the life 
time estimates resulted from 5% variation in the power term of the crack 
growth law. The other parameter contributed by a considerable lesser 
amount in the life variability. The results also indicated a considerable 
adwantage when the autofrettage process was applied to the gun tube. 
The lognormal probability density function "best" represented probability 
ranked life estimates when compared to the Weibull and normal functions, 
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NOMENCLATURE 

a 

b 

C 

C 

F' 

K 

K max 

Kmin 

Kc 
1 

li 

lc 
m 

N 

Inner tube radius 

Outer tube radius 

Autofrettage radius 

Coefficient in Paris' crack growth law 

Proportion of autofrettage 

Stress intensity factor (range) 

Maximum value of stress intensity during loading cycle 

Minimum value of stress intensity during loading cycle 

Fracture toughness 

Crack length 

Initial crack length 

Critical crack length 

Exponent in Paris' law 

Number of loading cycles 

Pressure 

Configuration correction factor 

Yield strength 

Factor employed in determination of K for partial autofrettage 
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1. INTRODUCTION. The fundamental safety requirement for a gun 
tube is that it should be withdrawn from service before crack-like 
defects which develop in the tube during initial firing can grow to a 
critical length and cause catastrophic, brittle failure of the tube. 
Ideally the fatigue life should exceed the wear life of the tube, and 
tube inspection should not be necessary during service life. However, 
there have been in-service failures of gun tubes [l], and there is 
evidence to suggest that a relatively small increase in firing pressures 
(e.g. for the firing of long-rod projectiles) or an improvement in wear 
characteristics of gun tubes may make fatigue life the dominant limiting 
factor in life assessment [2]. 

A linear-elastic fracture mechanics approach to crack growth rate 
prediction implies the need to calculate accurate stress intensity 
factor data, and to fully understand the effect of autofrettage residual 
stresses [3] and multiple cracking on stress intensity calibrations. 
Deterministic studies relating to each of these problem areas are reported 
elsewhere in this publication [3]. The objective of this study is to 
conduct a sensitivity analysis, utilizing standard Monte Carlo simulation 
techniques, in order to gain some understanding of the relative importance 
of Fracture Toughness, yield strength, proportion of autofrettage, 
initial crack length, firing pressure and crack growth law on the fatigue 
life of’ gun tube. 

2. METHOD OF LIFE PREDICTION. For much of the lifetime of a 
cracked component, the fatigue crack growth rate is given by Paris’ law: 

da m 
dN = C(K) 

where R is the crack length, N is the number of cycles and K is the 
stress intensity factor range, Kmax-K min [3], where Kmax and Kmin are 

the maximum and minimum values respectively of the stress intensity 
during the loading cycle. C and m are empirical constants, which are 
determined for the particular material and thickness in a standard test. 

In order to predict lifetime to failure for a gun tube, we write 
equation (1) such that: 

kc 
N= 

/ 

da 

C(Um 
R. 

1 

where Ri is some initial crack length (in the case of a gun tube this is 
normally taken as the depth of the heat-check craze cracking which 
appears at the bore after the first few rounds are fired) and Rc is the 
critical crack length associated with some critical value of Kmax, 
termed the fracture toughness or designated Kc. 
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A typical cracked gun-tube geometry is illustrated in Fig. 1. The 
tube has internal radius a, external radius b and has been autofrettaged 
to a radius c. [Autofrettage is a process in which plastic flow is 
induced in the tube during manufacture. This plastic flow commences at 
the bore, and spreads radially outwards. The process induces an advan- 
tageous distribution of compressive residual stresses in the inner 
portion of the tube which tend to reduce the stress intensity of cracks 
emanating from the inner radius.] 

In the case of a pressurized tube, it is standard practice to 
express the stress intensity factor range, K, as: 

K = Q(a) p(,rr ~)l'~ (3) 

where p is the maximum pressure during the firing cycle, and Q(a) is 
some configuration correction factor which includes the effects of 
loading and geometry. In the case of an autofrettaged tube: 

K=crKP+K A (4) 

where K is the stress intensity contribution due to internal pressure 
in the gore and the cracks, KA is the (negative) stress intensity due to 
full (100%) autofrettage (i.e. c = b). Numerical solutions for K and 
KA appear in [3]. a is a function of the ratio of material yieldPstrength 
Y to working pressure, p, given by: 

a = 

[ 

1 + L En (IL) _ 1 cb2-c23 

I? c P 2b2 1 
whilst the autofrettage radius, c is given by: 

(51 

c = F(b-a) -I- a (6) 

F being the proportion of autofrettage (i.e. percentage overstrain = 100 
x F.) 

3. SELECTED PARAMETERS. The mean parameter values considered are 
listed in Fig. 2. The working pressure, p (400MNmIL), material yield 
strength, Y (1200 MNm-') and fracture toughness, K (90 MNm -3/2 
selected to be typical of gun tube operation and msterial. 

) were 
The proportion 

of overstrain, F spans the whole range from zero to 100% autofrettage. 
'i is typical of measured heat-check crack depths. The Paris' law 
constants, C=1.45 x lO*ll and m=3.1 (giving crack growth rates in meters 
/cycle from stress intensity in MNm-3'2) are also characteristic of gun 
steel. The tube was assumed to have an inner radius of 5Omm and outer 
radius 1OOmm. 
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The coefficient of variation (C-V.) in each of the parameters is 
taken as 5% throughout, with the exception of working pressure (2%) and 
initial crack 'length (lo%), in order to model some of the "real-life" 
variations. The parameters marked with an '0' in Fig. 2 were not varied 
during the tests, since Y cannot influence life with zero autofrettage, 
and variations of autofrettage below zero and above full autofrettage 
are physically unacceptable. All of the parameters marked 'XX' were 
insensitive at the C.V. levels employed. 

4. MONTE CARLO SIMULATION. In the simulation scheme a probability 
distribution function for N described in (2) is determined. The necessary 
parameters C, M, R. and those related to K (4, 5, and 6) are represented 
by a normal distribution function with appropriate means and C.V. (See 
Fig. 2). 

A random selection from each of the parameter distributions is 
inserted in (2) and solution for K is obtained. This process is repeated 
until all functional values have been selected. Note, an equal number 
of random values for each individual parameters should be generated. The 
resultant number for the life time distribution will be the same as 
those determined for the parameters. Although an initial assumption of 
normality existed for each of the parameters, the resultant life estimate 
distribution was not normal. This situation often occurs in the Monte Carlo 
process. 

The random numbers for the individual functions are obtained from 
generation of uniform random numbers and solving for X in the relation. 

i 

fi dX = R (7) 

where R = Uni.form random number and 
fi= normal frequency distribution 

If the probability distributions of the controlling parameter are 
known from some experimental results or from an analytic basis, then the 
appropriate distribution function f. may be used. 1 

An examination of the relative change in the third and fourth 
moments (Skewness and Kurtosis) as related to the increasing number of 
simulations provided the necessary mechanism for determining an acceptable 
number of simulations. Observing the Tabulation of Moments vs. Number 
Trials in Fig. 3 indicated approximately 2000 simulations would be 
suf'ficient,. Acceptable convergence of Skewness and Kurtosis indicates 
functional distribution form does not vary due to increasing number 
trials. 
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5. SENSITIVITY ANALYSIS. Fig. 4 shows probability density histograms 
for the case of a non-autofrettaged tube with 40 internal radial cracks. 
This number was selected as being typical of crack patterns observed in 
non-autofrettaged-gun tubes. The results indicate a relative insensitivity 
to variations in p of 2%, of 2 and 5 percent for p and Kc respectively, 
but a most significant dependence on m with 5% variation. Fig. 4(d) 
shows the effect of varying all parameters simultaneously. 99.9% life 
with all parameters varying is 111 rounds. (Probability that lifetime of 
tube will exceed 111 rounds is -999.) 

Fig. 5 illustrates the results for a tube with 75% autofrettage 
(i.e, F = 0.75) with 4 internal radial cracks. This number appears 
typical of crack patterns in autofrettaged tubes. The parameters, in 
increasing order of sensitivity are R., F and m. The 99.9% life in this 
case with all parameters varying is 1869 rounds. 

Finally, Fig. 6 illustrates the results for 100% autofrettage (F = 
l.O), with 4 internal cracks. The sensitive parameters, in increasing 
order, are p, R. and m. The 99.9% life is 4683 rounds. With increasing 
amounts of auto * rettage, it becomes more important to include variations 
in all parameters, not just m (see Figs. 4, 5, 6). 

As the amount of autofrettage is increased, Kc effect on variability 
decreases while 2i exhibits the opposite characteristics. This appears 
reasonable on physical grounds, since more of the tube lifetime is 
expended at very short crack lengths as the amount of autofrettage is 
increased. Conversely, the proportion of life spent at longer crack 
lengths becomes less significant. 

Inspection of the variation in mean, standard deviation and 99.9% 
life indicates the very considerable advantages associated with the 
autofrettage process. In particular, the 99.9% life is increased from 
111 rounds with zero autofxettage, to 1869 with 75% autofrettage and 
4683 with 100% autofrettage. Since gun tubes would normally be required 
to guarantee something like 1500 rounds, and a factor of safety is 
required, it is clear that the non-autofrettaged tube would not be 
acceptable, whilst the 75% and 100% autofrettage tube would represent 
viable options, the only additional cost being the autofrettage process 
itself, no modifications to the material being required. 

6. CUMULATIVE PROBABILITY FITTING. Considering a random selection 
of 300 data values with parameter variations of the specified amount 
listed in Fig. 2, we obtain the Normal, Weibull and Lognoxmal density 
function representation of the ranked data illustrated in Figs. 7, 8 and 
9, for zero, 75% and 100% overstrain respectively. In all cases the RMS 
errors and graphical results indicate that the.Lognormal best represent 
the data. This observation is readily understood when we recall that 
the distribution is dominated by the effect of m, the exponent in Paris' 
law. The mean, standard deviation and Weibull parameter axe listed in 
Figs. 7, 8 and 9 with their corresponding 90% tolerance limits. The two 
parameter Weibull was considered to be a more accurate representation of 
the data than the three parameter results. The appearance of outliers 
in Figs. 7 and 9 do not effect either inference results or selection of 
the proper functional representation. 
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7. CONCLUSIONS 4 DISCUSSION. The combination of linear elastic 
fracture mechanics and an empirical crack growth law has become the 
standard method for the calculation of fatigue life in gun tubes. The 
fundamental requirement of such an approach is that the gun tube should 
be withdrawn from service before catastrophic brittle failure can occur. 

The sensitivity analysis conducted herein indicates that in non- 
autofrettaged gun tubes the most sensitive parameter is m, the exponent 
in Paris' crack growth law. With increasing amounts of autofrettage the 
initial crack length and proportion of autofrettage are also significant 
factors. For cumulative failure probability, the lognormal distribution 
is superior to both normal and Weibull distributions for zero, 75% and 
100% autofrettage. 

The improvement in 99.9% life resulting from large amounts of auto- 
frettage, based on typical materials and loadings, indicates the great 
advantages which autofrettage may provide. One particularly important 
feature of the results reported here is that the current practice of 
applying 75 % autofrettage and limiting life to approximately 2000 rounds 
for typical pressures and gun tube steels, is consistent with the results 
presented in Fig. 5 which were obtained using the Monte Carlo scheme. 

Whilst this study relates to a particular, axisymmetric geometry 
containing residual stresses, the benefits of introducing advantageous 
residual stresses in more complex geometrical configurations, such as 
pin-loaded lugs and welded joints, are already becoming apparent. This 
method of sensitivity analysis would also be applicable to such configurations. 
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Fig I: CRACKEDTHICK CYLINDER GEOMETRY 
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Fig. 2 : PARAMETERS TESTED IN MONTE CARLO SIMULATION 
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NUMERICAL PREDICTION OF RESIDUAL STRESSES IN AN 
AUTOFRETTAGED TUBE OF COMPRESSIBLE MATERIAL 

P. C. T. Chen 
U. S. Army Armament Research and Development Command 

Large Caliber Weapon Systems Laboratory 
Benet Weapons Laboratory 

Watervliet, NY 12189 

ABSTRACT. The residual stresses in an autofrettaged tube of compressible 
ma.terial are obtained by a new finite difference approach. The tube is 
as,sumed to obey the Mises' yield criterion, the Prandtl-Reuss flow theory and 
the isotropic-hardening rule. In order to test the accuracy of the computer 
pr,ogram, a convergence study for a nearly incompressible tube has been made 
and compared with the exact solution as well as the simulated results for 
residual stresses' in an incompressible tube. 

1. INTRODUCTION. The importance of favorable residual stresses in an 
autofrettaged tube is well known [l]. Many methods for predicting residual 
stresses have been reported [2-41. For an elastic-plastic material which 
obeys the Mises' yield criterion and the associated flow rules, a closed form 
solution exists only in the plane strain case neglecting strain hardening and 
compressibility [5]. Recently a method to simulate this problem by thermal 
loads has been devised by Hussain et al [6]. For a compressible material with 
or without strain hardening, a new finite difference approach has been 
developed by this author [7]. Two types of incremental loadings have been 
discussed. In the present paper, the numerical predIction of residual 
stresses in an autofrettaged tube of compressible material will be reported. 
The effect of Poisson's ratio will be discussed. In order to test the 
accuracy of the computer program, a convergence study for a nearly 
incompressible tube has been made and compared with the exact solution as well 
as, the simulated results for residual stresses in an incompressible tube. 

2. INCOMPRESSIBLE TUBE. For an ideally-plastic incompressible tube 
which obeys the Mises' yield criterion and the associated flow rules, a closed 
form solution exists in the plane strain case. The residual stresses and 
displacement after complete elastic unloading in a partially autofrettaged 
tube are given by 151, 

P2 b2 
(;z - 2 log if T 1) - py(l 5 p-1 1 aGr<p (1) 

r 

00 P2 b2 
- PI) (1 T --> 

P2 
p&r&b (2) 
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z (&b 2 - 2 log P/r - PI) a<rGn 

cr.& = (3) 

I 2 (p2/b2 
f3 

Pl) p<r<b 

u/r = (fi/2)(oo/E)(~/r)~ (4) 

where 

Pl = (1 - p2/b2 + 2 log p/a)/(b2/a2 - 1) (5) 

and p is the. radius of the autofrettaged interface. 

According to Hussain et al [6], the distribution of radial and hoop 
stresses can be simulated by a steady state thermal loading. The equivalence 
between the temperature gradient and the yield stress is 

Ea(T,-Tp) 260 
-----&--4dd--- = --- 

2(1-u)log(n/a) Js 
(6) 

and the temperature distribution is given by 

(Ta-Tp) 
T = T, - -------- log (r/a) 

log( p/a) 
a<rCp 

(7) 
T = T, p<r<b 

3. FINITE DIFFERENCE APPROACH. For a compressible material with or 
without strain hardening, a new finite difference approach has been developed 
by this author [7]. An incremental procedure is used for pressure beyond 
the elastic limit and the elastic solution is used as the initial condition. 
The cross section of the tube is divided into n rings and we want to determine 
all incremental quantities at all grid points in each incremental step. In 
the plastic region, the incremental stresses are related to the incremental 
strains by the incremental form 

and 

Au1 = dij AE~ for i,j = r,0,z (8) 

dij/2G = u/(1-2~) f "ij - ui'oj'/S (9) 

where E is Young's modulus, v is Poisson's ratio, "ij is the Kronecker delta, 
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s,2 
3(l+3 

1 H'/G)02 , 35 = E/(l+u> 

urn = (u,+ag+a,)/3 , Ui’ = c’i - (5, 

a = ( l/~)t(or-a~)2 + (q-cQ2 + (a,-u,)211’2 > a0 (10) 

and u. is the yield stress in simple tension or compression. For a strain 
hardening material, H' is the slope of the effective stress/plastic strain 
curve. For an ideally-plastic material, H' = 0. When u < a0 or da < 0, the 
state of stress is elastic and the third term in equation (9) disappears. 
Using equation (8) and Au = rAs0, there exists only two unknowns at each 
station that have to be determined for each increment of loading. The unknown 
variables in the present formulation are (AEB)~, (Acr)i, for I = 1,2,...n,nfl. 

The equation of equilibrium and the equation of compatibility are valid 
for both the elastic and the plastic regions of a thLzk-walled tube. The 
finite-difference forms of these two equations at -t = l,,..,n are given by 

(ri+1-2ri)(Aor)i - (ri+l-ri)(Aae)i -1- ri(A%)i+l 

= (rf+l-ri)(ae-Ur)i - riI(ar)i+l - (or>il 

for the equation of equilibrium, and 

(ri+l-2ri)(AEe)i - (ri+l-r)(AEr)i -t- ri(AEB)i+l 

= (ri+l-ri)(Er-Ee)i - rf[(Ee)ifl - (Ee>il 

for the equation of compatibility. 

(11) 

(12) 

With the aid of the incremental stress-strain relations (equation (8)), 
equation (11) can be rewritten as 

[(ri+l-Zri)(dl2)i + (-ri+l+ri)(dzz)iltAEe)i 

+ [(ri+l-2ri)(dll)i + (-ri+l+ri>(d2r)il(AE,)i 

+ ri(dl2)i+l(AE~)i+l + r~Cdll)i+l(A~r)i-tl 

= (ri+l-ri)(uo-ar) - ri[(ar)i+l - (ar>il (13) 

T‘ne boundary conditions for the problem are 

Aor(a,t) = -Ap , Aor(b,t) = 0 (14) 

Using the incremental relations (equation (8)), we rewrite equation (11) as 

(dl2>l(&j>l + (dll)lU=,)l = -AP (15) 
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and 

(~12ht1(~~&,+1 + Wll)n+l(A+,+l = 0 (161 

Now we can form a system of %(n+l) equations for solving 2(n+l) unknowns, 
(Ace)i, (A~r)i, for i = 1,2,...,n,n+l. Equations (15) and (16) are taken as 
the first and last equations, respectively, and the other 2n equations are set 
up at i = 1,2 ,...,n using equations (12) and (13). The final system is an 
unsymmetric band matrix with the nonzero terms clustered about the main 
diagonal, two-below and one above. 

When the total applied pressure p is given, it is natural to divide the 
loading path into m equal fixed increments with Ap = (p-p*)!m where p* is the 
pressure corresponding to initial yielding. These fixed increments need not 
be equal for all steps and any sequence of m increments can be supplied by the 
user. In [7], an adaptive algorithm to generate a sequence of load increments 
was described. 

4. NUMERICAL RESULTS AND DISCUSSIONS. In order to test the accuracy of 
the computer program, a convergence study for a nearly incompressible tube (V 
= .4999999) has been made and compared with the exact solution for an 
incompressible tube (v = l/2). The numerical results for a tube with b/a = 2 
and H' = 0 are very accurate as shown in Table 1 for 30, 60, and 100 percent 
overstrain. A comparison of the calculated residual hoop stresses with the 
exact solution as well as the simulated results is shown in Table 2. The 
finite difference approach can generate more accurate results than the method 
of simulation by thermal load for incompressible material. In order to 
discuss the effect of compressibility, we calculate the residual stresses for 
a tube with b/a = 2, H' = 0, n = 400, V = 0, 0.3, 0.4999. The results are 
shown in Tables 3, 4, and 5 for residllal hoop, radial, and axial components, 
respectively. The effect of hardening on the residual stresses can be 
discussed in a similar way. The results for a tube with b/a = 2, V = 0.3, n = 
400, H'/E = 0, l/9, l/19 (w = Et/E = 0, 0.05, P.0) are shown in Tables 6, 7, 
and 8 for residual hoop, radial, and axial components, respectively. It can 
be seen that the effect of hardening on residual hoop stress is larger than 
that aE compressibility. 
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TABLE 1. CONVERGENCE STUDY FOR A NEARLY INCOMPRESSIBLE TUBE UNDER 

INTERNAL PRESSURE (b/a - 2, I-I' - 0, u = .4999999) 

i iEu i 
MAX I Inside 1 - -", 1 

P/Q I 
I 

cre/cro I 
I 

4QO 

I 

I 30% 
I 

1 
I 1:: 
I 200 

I 
I 400 

I I * 
I 60% I 10 

4 
I 

I 

/ ,a! 

I 200 
I 400 

I I * 
I I, 
I 100% I 10 
I 
I I 2o 
I I 1;: 

/ 

I 200 
I 400 

I I * 

’ .64630 ’ 

’ ::“,z I 
I .63725 ’ 
I .63681 1 
I .63659 ’ 
f .63637 ’ 

I 
I .77375 I 

I .76123 .75464 1 ’ 

I .75257 -75156 ’ ’ 

i .75056 .75105 I ’ 
I 

I .82096 ’ 
I .80999 I 
1 .80408 ’ 
I “80221 I 

/ -80129 .80083 1 ’ 
! -80038 ! 

.80697 ' 

.81444 ’ 

.81861 I 

.81996 ’ 

.82062 ’ 
-82095 ’ 
.82128 I 

I 
.93345 I 
.94049 I 
-94438 ’ 
.94563 ’ 
-94625 ’ 
.94655 ’ 
.94685 

1.15470 
1.15470 
1.15470 
1.15470 
1.15470 
1.15470 
1.15470 

I 
I 

I 
I 
I 
I 

I 
I 

-.06895 
-.06364 
-.05080 
-.05990 
-.05946 
-.05924 
-. 05902 

-. 19640 
-. 18388 
-. 17729 
-. 17522 
-. 17421 
-. 17371 
-. 17321 

-.24361 
-. 23264 
-.22673 
-.22486 
-.22394 
-.22348 
-. 22303 

’ 1.54781 1 

I 

I 

1.50104 I 
1.47764 ’ 
1.47047 I 
1.46699 1 
1.46528 1 
1.46358 1 

I 
2.49329 ’ 
2.33897 ’ 
2.26259 ’ 
2.23922 ’ 
2.22805 ’ 
2.22251 i 
2.21703 ’ 

I 
4.14111 I 
3.76669 ’ 
3.57791 I 
3.51990 I 
3.49173 I 
3.47785 i 

I 3=46410 I 
* Exact solution. 
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TABLE 2. A COMPARISON OF RESIDUAL HOOP STRESS (ao/ao> FOR b/a = 2, H’ = 0 

T- I I 
I 

I O.S. I 
v = .5 

r/a I Exact 

I 
I 

I 

I 

I 

I 
I 
I 
I 
I 

I 

/ 

I 

I 

I 

I 

! 

30% I 

I 
I 

I 

I 

I 
I 

60% I 

I 

I 

I 

I 

I 
100% I 

I 

I 

I I 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1 -0.54224 
1 - .28497 
I - .07250 
I -t .10709 
1 + .09672 
1 + .08835 
I f .8150 
1 -5 .07583 
I + .07107 
1 + .06705 
1 + .06361 
I 
1 -0.84679 

/ I - ::z -13525 
1 + .03190 
I + .17737 
1 + .30575 
1 + "28446 
I + .26662 
1 + .25152 
1 f .23863 

I - -0.97964 .68437 

I - - .44303 .24098 
- .06842 

I f .08142 

I + + .21338 l 33099 
+ .43681 

I + -I- .53306 .62111 
I 
I 
I_ 

I 
I-t =i 400 

v = .4999 

-0.54317 
- .28582 
- .07329 
+ .10636 
-i- .09587 
+ .08774 
-I- .08056 
+ .07487 
+ .07102 
+ .06610 
+ .06267 

-0.84865 
- .56468 
- l 33191 
- .13652 
-I- .03076 
+ .17635 
-t- .30483 
+ .28345 
+ .26555 
+ .25042 
-I- .23752 

-0.98130 
- .68579 
- .44425 
- .24203 
- .06933 
+ .08063 
+ .21268 
+ .33037 
f .43634 
+ .53259 
+ .62069 

v !z .3000 
Simulation 

-0.54645 
- .29157 
- .08021 
+I- .09897 
+ .08962 
+ .08205 
+ .07582 
+ .07065 
+ .06630 
+ .06261 
+ .05945 

-0.85480 
- .57384 
- "34250 
- .14766 
+ .01955 
+ .16534 
-I- .29416 
-I- .21408 
-I+ .25270 
-k -24288 
-i- .23042 

-0.99326 
- .70058 
- .46027 
- .25841 
- .08559 
-I- .06474 
+ .19729 
f .31553 
-t- .42205 
+ .51886 
-t .60749 

I I -- - 

3.56 



TABLE 3. THE EFFECT OF COMPRESSIBILITY ON THE RESIDUAL STRESS q/u, 
(b/a = 2, H' = 0, n = 400) 

T 

1 i i i I 
O.S. I r/a I u = .4999 I u-.3000 I u = .oooo 

30% i 
I 
I 

1 

1 

I 

I 
I 

60% I 
I 

/ 

1 

I 

I 
I 

100% I 
I 

I 

I 

I 

I 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

I -o-54317 - .28528 
I - .07329 

I -t -t l .09587 10636 
I -t .08774 

I- .08056 
+ .07487 

1 + .07012 
I -I- .06610 
1 -I- .06267 
I 
1 -0.84865 

1 + .30483 
1 +I- .28345 
1 -I- .26555 
1 + .25042 
1 -I+ .23752 
I 

I -“=g8130 - .68579 
- .44425 
- .24203 

I - .06933 
1 -I- .08063 
1 + .21268 
1 -t .33037 
I + .43634 
1 + .53259 
1 -I- .62069 

I 

-0.53992 
- .28233 
- .07127 
+ .16389 
+ .09358 
+ .08530 
+ a07854 
+I- .07297 
-I- .06831 
+ .06437 
+ .06102 

-0.84138 
- .55776 
- .32513 
- .13036 
-I- .03487 
+ .17160 
+ .29721 
+ .27635 
+ .25889 
-t .24414 
-I- .23155 

-0.97388 
- .67902 
- .43792 
- .23600 
- .06370 
-I- .08531 
+ .21530 
-t .32918 
-I- .42900 
-I- .51654 
-t- .59296 

I 
I 
T 

-0.51455 
- .25808 
- .05712 
+ .09593 
+ 008647 
+ .07887 
-t ,07266 
-I- .06753 
+ .06324 
+ .05962 
-I- .05653 

I 
I 
I 
/ 
I 
I 
I 

I 

/ 

I 
I 

i 

I 

f 

I 

f 

I 
I 

+ .43768 1 
-I- .47918 I 

-0.80090 
- .51977 
- .28850 
- .09892 
+ .05298 
-t- .17167 
+ .26278 
+ .24434 
-t .22892 
+ .21587 
+ .20474 

-0.92931 
- .63864 
- .40015 
- .20018 
- .03171 
+ ,10837 
+ .22222 
-t .31266 
-I- .38327 

I I I L. 
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TABLE 4. THE EFFECT OF COHPRESSIBILITY ON THE RESIDUAL STRESS a,/~, 
(b/a = 2, H’ = 0, n = 400) 

I I I I 
I 

I O.S. I 
I I 

r/a I v = .4999 I v=.3000 I v=.oooo I 

30% I 

I 

I 

I 

I 
I 

I 
60% 1 

I 
I 

I 

/ 

/ 
I 
I 

100% I 
I 

I 

i 
I 
I 

I 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1,9 
2.0 

I - o~ooooo .03732 
1 - .04891 

I - - -o4368 .03320 
I - .02477 

I - - .01220 l o178g 
I - .00744 
I - .00342 

I o*ooooo 
0.00000 

- .06371 
- .09539 

I - - .10182 l lo581 
- .08797 
- .06731 

I - - l .02804 o45g3 
I - .01291 

I o*ooooo 
I 0.00000 

- .07520 
- .11561 
- .13282 
- .13424 

/ - - .10764 l 12474 
- .08523 
- *OS911 

I - .03042 
I 0.00000 

0.00000 
- .03684 
- .04812 
- .04287 
- .03255 
- .02427 
- .01752 
- .01194 
- “00728 
- .00335 

0.00000 

1.0 
1.1 
1.2 
1,3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

0.00000 
- .66302 
- .09415 
- .10413 
- .09986 
- .08598 
- .06566 
- .04480 
- -02735 
- .01259 

0.00000 

0.00000 I 
- .25&08 1 
- .04462 1 
- .03940 I 
- .02994 I 
- ,02234 1 
- .01613 1 
- .01100 I 
- .00671 I 
- .00309 I 
0.00000 I 

I 
0.00000 I 

- ,05957 I 

l*O 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

0.00000 
- .07453 
- l 11444 
- .13125 
- .13235 
- .12262 
- .10541 
- .08307 
- .0572& 
- .02929 

0.00000 I 
!- 

- .08795 
- .09578 
- .09032 
- .07658 
- .05803 
- .03960 
- .02417 
- .01113 

0 .ooooo 

0.00000 
- .07076 
- .10780 
- .12233 
- .12165 
- .11079 
- .09335 
- .07197 
- .04850 
- .02423 

0.00000 

I 

I “- 
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‘TABLE 5. .TtIE EFFECT OF COMPRESSIBILITY ON THE RESLDIJAL STRESS uz/a, 
(b/a = 2, H’ = 0, n * hOO> 

I I I I 
I I I I 

I o*s* I 
r/a 

I 
u - .4999 I v = .3000 

-1 I 

30% i 1.0 -0.27153 -0.15819 +0.01264 1 

f 
1.1 - .16153 - .08015 + .03964 1 
1.2 - .06108 I - .02272 -t- “02990 I 

I 
1.3 + .03133 + .01831 + .ooooo I 
1.4 + .03133 + .01831 + “00000 I 

I 1.5 + .03233 I -t .01831 + .ooooo I 
I 1.6 -I .03133 I- -01831 + .ooooo I 

i 
1.7 -t .03133 -I- .01831 + .ooooo I 
1.8 + .03133 + “01831 f .ooooo I 

1 
1.9 + .03133 + -01831 + l ooooo I 
2.0 + .03133 + -01831 + .ooooo I 

I I 
60% 1 1.0 -0.42426 I -0.28532 -0.07295 I 

I 1.1 - .31413 - “18422 f .01377 I 

I 
1.2 - .21360 - .10266 + .06134 1 
1.3 I - -12112 - .03886 -i- .07385 1 

I 1.4 - l 03551 I + .00946 -I” a06108 I 

I 
1.5 + .04419 + .04477 “t .03373 I 
1.6 + .11874 -I- .06946 +o.ooooo I 

I 1.7 + .11874 + -06946 +o.ooooo I 
I 1.8 f .11874 + .06946 +o.ooooo I 

I 
1.9 + .11874 + .06946 +o.ooooo I 
2.0 I+ .11874 + .06946 +o.ooooo I 

I I 
100% I 1.0 -0.49052 -0.36683 -0.16290 I 

I 1.1 - .38037 I - .25538 - .05105 I 

f 
1.2 - .27984 - 15795 
1.3 - .18737 - :07470 

+ .03647 1 
-I- .09527 I 

/ 

1.4 - l 10177 - .00538 * . 12490 1 
1.5 - .02210 + .05073 + ” 12951 I 
1.6 -I- .05243 -t .09474 -I- . 11609 I 

I 1.7 i- .12243 -+ .I2800 + .09177 I 

I 
1.8 + .18842 + .15179 + .06210 I 
1.9 

I 
2.0 i 

-I- .25084 
i 

-I- .16184 
+ .31028 + -17789 i 

+ .03078 1 
+ .ooooo I 

I I I I I 

7 
v-.0000 I 

I 
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TABLE 6. THE EFFECT OF HARDENING ON THE RESIDUAL STRESS u& 
(b/a = 2, v e.3, n = 400) 

I 
I- I 

I 
I I 
I O.S. 1 r/a I w = 0.00 I w ” 0.05 

I 
i 
I 
I 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

I -“=53gg2 - .28233 
I - .07127 
1 + .16389 
1 -k .09358 
1 + .08530 

1 f .06437 
1 + .06102 
I 

I -“=84138 - .55776 
- .32513 
- .13036 

I + .03487 
1 + .17610 
I + l 29721 
1 + .27635 
I + .25889 
I + .24414 
1 + .23155 
I 

I -“*g7388 - .67902 
I - .43792 

I - - .06370 l 23600 
t + .08531 
I +I- .21530 
I + .32918 
1 -t .42906 
1 -t .51634 
1 + .59296 
I 

-0.50612 
- .26457 
- .06644 
I- .09831 
+ .08861 
+ .08082 
-t l 07445 
+ .06919 
f .064&O 
+ .06108 
f .05792 

-0.78984 
- .52382 
- .30556 
- .12276 
+ .03245 
+ . 16532 
+ .27952 
+ .2$991 
+ .24349 
I- .22962 
-t .21778 

-0.91430 
- .637&l 
- .4:165 
- -22219 
- .06050 
-I- .07938 
+ .20147 
+t- .30854 
-I- .40260 
+ -48518 
f .55752 

I 
I 

w - 0.10 I 
I 

-0.47446 i 
- .24824 1 
- .06254 1 
-t .09216 1 
+ .08306 1 
-t .07575 I 
I- .06978 1 
+ .06485 1 
f .06073 1 
+ .05725 1 
I- .05428 1 

I 
-0.74017 I 
- .49114 I 
- .28679 1 

f 
I 

t 

I 
I 
I 

t 
I 

- .11559 
+ .02989 
+ -15461 
+ .26204 
+ .24364 
f .22825 
+ .21524 
-I- .20414 

-0.85591 
- .59733 
- .38574 
- .20843 
- .05708 
+ .07388 
+ .18825 
+ .28866 
+ l 37700 
+ .45473 
t -52301 

I 
I 
I 
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TABLE 7. THE EFFECT OF HARDENING ON THE RESIDUAL STRESS c&, 
(b/a = 2, v =.3, n = 400) 

I I I I 
I 
I O.S. I r/a I 

I ---7---I 
w = 0.00 I w = 0.05 w-o.10 I 

I I I I / I 
T--1---~ 

1 30% i 
I 

I 
I 
I 

I 

I 
I 
I 

I 

I 
I 
I 

I I 
I 

I 
I 
I 

I 
I 1 

I I 
I I 
I I 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

i 0.00000 
1 -0.03684 

1 - .00728 
I - .00335 
I 0.00000 
I 
I 0.00000 
1 -0.06302 
I - .09415 

I - - .099&6 l lo4l3 
- .08598 
- .06566 
- .04480 
- .0273S 

1 - .01259 
I - .ooooo 

.ooooo 

I -“*07453 - .11444 

! 0.00000 

0.00000 
- .03467 
- .04531 
- .04039 
- .03070 
- .02290 
- .01654 
- .01128 
- .00688 
- .00317 

0.00000 

0 .ooooo 
- .05919 
- .08844 
- .09784 
- .09386 
- *O&O84 
- .06174 
- .04213 
- .02572 
- .01184 

0.00000 

0.00000 
-0.06991 
-0.10736 
-0.12316 
-0.12421 
-0.lL511 

0.09898 
- .07803 
- .05382 
- .02753 

0.00000 

-0.00000 I 
- .03250 1 
- .04249 I 
- .03788 1 
- .02879 1 
- .02149 1 
- .01551 I 
- .01057 I 
- .00645 1 
- ,00297 I 
-0.00000 I 

I 
-0,00000 I 
- l 05544 I 
- .08286 1 
- .09169 i 
- .08799 1 
- .07580 1 
- ,05790 I 
- .03952 I 
- .02411 I 
- .OlllO I 
-0.00000 I 

I 
-0.00000 I 
- .06543 1 
- .10050 
- .11530 
- .11631 
- .10781 
- .09272 
- .07312 
- .05045 
- .02582 

0.00000 



TABLE 8. THE EFFECT OF HARDENING ON THE RESIDUAL STRESS a,&, 
(b/a = 2, v =.3, n = 400) 

i i I I I 
I O.S. I r/a w = 0.00 I w = 0.05 I w = 0.10 I 

30% 1.0 
1.1 
1.2 
1.3 
1.4 
1.S 
1.6 
1.7 
1.8 
1.9 
2.0 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

100% 1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

I -ov15819 - .08015 ’ I 
I - .02272 ’ 
I + .01831 ’ 
’ + .01831 1 
I + .01831 1 
’ + .01831 ’ 
1 I- .01831 ’ 
1 + .01831 ’ 
1, + .0183i ’ 
’ -I- .01831 1 
I 

I -o-28532 
I 

- ml8422 ’ 

I 
- A0266 I 
- .03886 ’ 

1 + .00946 I 
I + .O0447 I 
1 + .06946 ’ 1 1 l ;;;;; I 

] -I- :06946 / 

I + -o6g46 ’ I 
1 -0.36683 1 

I - - .25538 .15795 ’ I 

/ - - .00538 l 07470 ’ 1 

I 1 l zz j 
’ + :12800 1 
I -I- .15197 I 

I 
+ .16814 I 
+ .17789 I 

-0*14544 I 
- .07403 I 
- .02097 I 
-I- .01737 I 
“I- .01737 I 
I- .01737 I 
+ .01737 I 
+ .01737 I 
+ .01737 I 
-I- .01737 I 
+ .01737 I 

I 
- .25926 ’ 
- .16735 ’ 
- .09318 ’ 
- .03494 I 
-I- .00946 ’ 
+ .04219 I 
-k .06533 ’ 
“I- -06533 I 
+ l 06533 I 
+ .06533 ’ 
+ .06533 t 

I 
-0.33011 I 
- .22763 ’ 
-0.13872 ’ 
-0.06310 ’ 
-0.00025 ’ 
e0.05065 ’ 
+-0.09068 I 
+0.12107 ’ 
+0.14312 ’ 
-f-O.15811 ’ 
M.16726 ’ 

I 

-0.13389 ‘I 
- ,06852 1 
- -01953 1 
-+ -01628 1 
+ l 01628 I 
+ .01628 ’ 
+ .01628 ’ 
-I- .01628 ’ 
+ .01628 ’ 
+ .01628 ’ 
+ .01628 ’ 

I 
-0.23525 ’ 
- .15185 ’ 
- .08450 ’ 
- .03142 1 
+ .00931 I 
-I- l 03959 I 
+ .06124 I 
-I- .06124 ’ 
-I- .06124 ’ 
+ .06124 ’ 
+ .06124 ’ 

I 
-0.29555 I 
- .20188 i 
- .12109 I 
- .05265 t 
+0.00416 ’ 
- .05022 ’ 
- .08655 ’ 
- .11426 ’ 
- .13449 ’ 
- .14835 ’ 
+ .15690 1 
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DYNAMIC GUN TUBE BENDING ANALYSIS 

Richard A. Lee, Jonathan F. Kring, and Dana S. Charles 
US Army Tank-Automotive Command, Warren, Michigan 

ABSTRACT. A simulation is presented of a gun barrel and its support at 
the ti;unnion. The simulation was programmed on an EAI 781 hybrid computer. 
from a magnetic field test tape. Errors due to dynamic gun tube bending are 
presented. 

OBJECTIVE. Our objective is to evaluate the error due to gun tube flexure 
introduced from vehicle motions while firing-on-the-move. The analysis done 
will be applicable to the dynamic bending of any beam-like structure. 

INTRODUCTION. In recent years there has been an increased emphasis on 
firin?) a combat vehicle's main weapon while the vehicle was moving. This has 
been called "firing-on-the-move" (FOM). Stabilization systems were added to 
vehic:#es that were designed to perform accurate stationary firing with the idea 
that stabilizing the gun in elevation and azimuth would allow the vehicle to 
perform accurate firing while moving. However, this was not the case. Errors 
occurred while firing-on-the-move that are not significant when firing from a 
stationary vehicle. Some of these errors are the horizontal and vertical 
vehicle veloc-ities, stabilization errors, combined pitching and rolling motions, 
and gun tube flexure. This report is concerned with evaluating the error due 
to gun tube flexures that are introduced from vehicle motions. 

A gun tube can bend or take non-uniform shape due to disturbances or 
phenomena that are not vehicle introduced. These can be caused from firing 
the gun or from sunlight heating one side of the gun tube. These errors are 
not included in this simulation. The static or quasi-static error caused from 
thermal gradients in the tube is corrected for in current vehicles with a 
muzzle reference system. This system has a small mirror mounted on the muzzle 
end of the tube. A light beam is reflected off the mirror to align the sight 
with the tube muzzle. This system performs very well for these quasi-static 
corrections but cannot be used for dynamic tube leveling on the moving vehicle. 

:[t is extremely difficult to measure the dynamic bending of a gun tube in 
a vehicle traversing cross-country terrain. A one-mil angular bending error in 
a tube will produce approximately a five-foot error firing at a target 1600 
meters away. This is a significant error and one must measure the tube bending 
to considerably less than one mil. To give some indication of the angular 
size this corresponds, i.e., the angle a golf ball subtends a football field 
away "is about 0.3 mils. 

The derivation of the equations that were programmed on the computer is 
given in Appendix A. The equations and computer programs are in a general form 
and are applicable to any symmetrical gun tube. Realistic dimensions and 
material data were chosen for the analysis. The gun tube was separated into 
eighteen uniform elements, with each finite element having uniform character- 
istics over its length. One thing to note in the equations is that the gun 
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tube rigidity increases as the fourth power of the diameter. Thus, 
caliber gun tubes are considerably more rigid that small ones. 

arger 

The model was implemented and solved on a hybrid computer. The 
modeled on an analog computer and forcing functions were supplied by 
digital computer via D/A. The vehicle ride was obtained from magnet 

gun was 
the 
c tape 

recordings of field data. These rides were digitized and stored in the digital 
computer for use as the gun forcing functions. The input into the gun was only 
in the vertical direction; consequently, the error data presented are for the 
gun tube flexure in a vertical plane. In reality, there is some flexing in the 
horizontal direction but that is not considered here. 

DISCUSSION. The purpose of this study was to measure by computer tech- 
niques the muzzle error at a mile range of a gun barrel subjected to dynamic 
inputs at the trunnion. To simulate the gun tube, it was divided into sections 
to analyze its response using Euler's equation for the flexure of a beam. 

The equations of motion as applied to the sectioned tube are as follows: 

1. Basic equation for gun barrel without support: 

. . 
MLYL = 

2W)L 
3 * yL+l ( - 2YL + YLsl 

> 
- 

(q+l * 
xL xLx:+l 

( yL+2 - 2yL+l + yL 1 

(E")L-l * 

xLX:-l 
c 

Y 
L - *yL-l + YL.& J 

WHERE: L = Subscript to designate the section 
M= Mass 
E = Modulus of elasticity 
I = Moment of inertia 
X = Length 
Y = Vertical Displacement 
i; = Vertical acceleration 

2. Basic equations for gun barrel with support acting on lst, 2nd, and 11th 
sections: 

a. 1st Section 

. . 
MIYI. = 

(EU2 
--*Y 

xlxI 
( 3 - KS * Y1 

WHERE: KS = Spring constant of support (12,200 lbs/in) 
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b ,‘ 2nd Section - ,.. 

c . . 11th Section 

. . 
M:!lY1l = 

NOTE; A detailed description in the development of the equations of motion 
isnolied in Appendix A, 

The equations of motion were simulated on the analog portion of the hybrid 
compu-Ler. A typical analog circuit that generates sections 1, 2, and 3 is 
shown in Figure 2. 

The muzzle error due to the flexure of the gun tube has two components, 
one b'ased on the bending displacement and one based on the rate of change of 
that bending, We refer to these as angular error and velocity error and their 
sum as total error. 'If the tube were completely rigid, this error would be 
zero. Bending from gravity,occurs, but since the error from this is well-known 
and compensated for, it is removed prior to a simulation run. 

,lt the start of a simulation run, the static error due to analog noise 
was measured and removed. The model was run 200 times slower than real time 
and 213 sample measurements of the error each second were taken to avoid inter- 
ference from the natural frequency af the tube, which was approximately 500 Hz. 
Seven and one-half seconds of each ride was studied to obtain a representative 
sampling of the error. The vertical displacements of the trunnionwereinputled 
dynamically, and the resulting error measurements saved in computer storage for 
processing after the run. Refer to Appendix B for details on the trunnion 
inputs. 

Six different vehicle rides were studied, each with and without the addi- 
tional support. For each of the types of error collected, distributions were 
determined with regard to the gun aiming at a target 1600 meters distant. The 
range of error. was divided into classes and histograms of the frequency that 
the error fell into each class were made. Time histories of the total error 
were also plotted. 
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Hit probability curves were generated based on each type of error. For 
ten selected target sizes the percentage of hits given, the measured errors 
were calculated. A smooth curve was fit through the ten target size points. 
Since an enemy tank would be approximately 2.5 meters high, hi.t probabilities 
for this particular target size are displayed in Figure 3. 

A major concern was the relative contribution of the velocity error, as a 
compensating system for this does not yet exist. For all the rides studied, 
the velocity error averaged 3.2 percent of the total error without the support 
and 15.6 percent with the support. In the latter case, the increase is prob- 
ably due to the higher total accuracy of the system with the extra support. 
However, in both cases, the contribution is minor. These results are displayed 
in Figure 4. 

By referring to Figure 3, the effect of the additional support can be 
easily seen. For the 2.5 Sneter target, hit probability increased from an average 
of 12.9 percent to an average of 79.3 percent. This large improvement in 
performance shows that if firing on the move is desired, additional rigidity 
of the gun barrel will greatly reduce the error caused by the dynamic motion of 
the vehicle. 

CONCLUSIONS. To perform accurate firing on the move, the gun tube flexure 
due to vehicle motion must be considered. 

For the rides and gun used in this simulation, traversing Course 4 at 
7 mph resulted in the gun being on a 2.5 meter target 1600 rneters away less 
than 10 percent of the time. This error was due only to gun tube bending--the 
sight and breech end of the gun were pointing at the center of the target. 

Providing a rigid support for the gun tube resulted in an increase in the 
hit probability for the "bending" condition of a factor greater than 7. 

Providing a rigid support for a gun tube will significantly decrease the 
bending error. 

The tube bending error is due almost entirely to the tube's angular posi- 
tion. The error due to rnuzzle velocity was insignificant. 

For some conditions the gun tube bending error can be the rnost significant 
error occurring while fir-ing on the move. 
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APPENDIX A 

Equations of Motion Derivation 

Euler's equation for the flexure of a beam: 

(A-1) 

The slope across an element i is given by: 

dYi (Yi-1 * Yi) (A-2) -- = 
dXi AXi 

Yi is the vertical distance moved for element i from an arbitrary reference 
line. 

The second derivative or rate of change of slope is the difference between the 
left and right faces of the element. 

i.e. 

d2Yi YlmI - Y;+l 
-z 

dX: AX; 
(A-3) 
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Where the prime denotes derivative 

Then: 

d2Yi YiMl - 2Yi + Yi+l 
= 

-ii AX: 
(A-4) 

The bending moment at each element is given by: 

M. = (EI)i d2Yi 
1 II 

P-5) 
dXf 

Then for EI constant over element i the bending moment of element i is given 
by: 

Mi = 
iEI)i (Yi-1 - 2'fi + Yi+l) (A-6 

AX; 

Euler's equation states: 

!& = -.. __/ w d2Y (A-7 

dX* g dt* 

To take the derivative of the bending moment EI must be constant over the 
element, 

The rate of change of bending movement over the element is given by: 

dMi ; y-1 
- Mi 

-*. 
dXi AXi 

The second derivative is then given by: 

Then: 

(A-8) 

d*Mi Mi-l - 2Mi -C Mi+l 
-= 

dX: AXf 
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Writing each moment eqcrntiun 

The mass of each 
ehw1t. 

(A-11) 

(A-12) 

(A-13) 

EulePs equation 

i (A-14 

is then written as: 

3 
p\ d”Yvi (EI)i 1 (Yi il - 2Yi_l ~ Yi) 2(EI)i (Yi_~ - 2Yi f Yi+l) 

i -I---- = _C-,-.-*-- --_c_ -v-I__-r. - -". -.._ cc rC__+_C--_"s- -- r.-.--_- --I_-- 
&! AXi AX; a AX; 

element is the mass per unit length tirtl~s the length of the 

Evakating the end conditions: 

There is no bending moment on the end element 

2 
cl M erld M i+l _e.- = --em,- 

d&d ^x; 

Second from end 

2 cl M end+]. ~ -2Mi f "i-I-1 
--____ --r -.---..Tf-.-+..-. 

dx&d+:\m AX; 

(A-16) 

(A-17) 
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The opposite end 

d2M end M = 3 

dXznd AX; 

and 

d*M end-l 

dX&d-l 

= 
M i-l - 2M. 7 

AX! 

(A-18) 

(A-19) 

APPENDIX B 

Trunnion Movement Generation 

A 14-channel magnetic tape of analog field data from tests conducted at 
Fort Knox, Kentucky was used to provide center of gravity, vertical, pitch, 
and roll acceleration signals. These were combined to produce a vertical 
trunnion acceleration signal which was digitally sampled at 100 times per 
second, using a high-speed digital-to-analog converter, and stored for later 
use. 

The analog simulation was run 100 times slower than real time to obtain a 
more accurate simulation. This also allowed us to observe high-frequency gun 
tube movements which would have been difficult to follow with the naked eye. 

The acceleration signal was digitally integrated twice to provide a dis- 
placement signal which was applied to the trunnion during simulation. The 
displacement signal was inputted into the feedback inverter of the supports 
(see Figure 2), which caused the displacement of the gun to match the driving 
signal. 

Figure 5 shows a typical displacement signal used as input to the trunnion. 
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FINITI: ELFMENT MODELING Ox: THE VULNERABILITY OF AN M-15 LAND MINE lJSING 
AN EXPLICIT INTEGRATION SCHEME 

Frederick H. Gregory 
U.S. Army Ballistic Research Laboratory 

U.S, Army Armament Research and Development Command 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. A finite element model of the body of an'M-15 land mine has 
been $ormula<ed using an axisymmetric two-dimensional mesh with both rigid 
and rlanlinear spring base support boundary conditions to simulate the soi1. 
This model has been analyzed with the AIIIINA finite element structural response 
code, An analysis of various implicit/explicit time integration schemes 
showed that the explicit central difference time marching method gave the 
best solution in terms of displacements and stresses. &A numerical study was 
conducted to determine the optimum time for which convergence of the solution 
was obtained. 

The two basic materials of which the mine i,s composed, steel and high 
explosive, were assumed to have nonlinear constitutive material models. The 
steel case was found to be markedly inhomogeneous via 1-D tensile tests of 
speci.mens cut from various areas of the same. This material was modeled with 
a bilinear stress-strain curve, von Mises yield condition, and kinematic 
hardening rule. A tension cut-off elastic-plastic model. of the explosive 
which employed a bulk modulus versus volume strain relation, was derived from 
a Mie-Grcneisen shock wave equation of state. This model allowed a tension 
cut-off plane to form in a direction normal to the principal tensile stress 
when<:vcr the strain initially exceeded 0.1% in tension. 

Solution of this problem out to 2 msec of real time required about 4 hours 
of CIIU time on the CK 7600 computer for a transient shock load imposed an the 
top and sides of the mine. Failure of the mint case was predicted, based on 
a comparison of the value of the three-dimensional second invariant of plastic 
strai.n with that of the one-dimensional value measured in the tensile tests+ 

1. INTRODLJCTION. Tl-is paper describes the response of an antitank mine 
to a transient blast-load. The rationale for this analysis is the need to 
develop a remote, expeditious means of clearing a Path through an enemy mine 
fielC[. A technique has been suggested (Ref. 1) by which a relatively large 
tranciient pressure is delivered to the surface of the earth by means af ex- 
plosives. The object of this study was to determine the extent of structural 
damai;e to an M-15 mine body from a given level of blast wave amplitude and 
shape. The principal kill mechanism is to be a serious distortion or rupture 
of the mine body. It was not intended that advantage be taken of some nuance 
of crlmponent design such as fuze initiation or pressure plate removal, etc. 
Some considerations such as the latter have been examined in Ref. 2. 

The pap&- is divided into four major areas as Eollows: (a) problem 
definition, (b) determination of material properties and selection of failure 
criteria, (c) finite element model description and calculations, and (d) 
analysis of predicted response, 
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2. PROBLEM DEFINITION. -- 

A. M-15 Antitank Mine Descrlson. 'T'hc M-15 mine has a cylindrical 
steel body with a primary fuze well in the center of the top and two secondary 
fuze wells, one on the side and one on the bottom. The center of the top of 
the mine has a depressed area which houses the pressure plate assembly. 
Drawings of the mine are shown in Figures 1 and 2. The mine has a nominal 
di,ametex of 32.13 cm, height of 9.88 cm, and weighs 14.3 kg. 

The mine body is made essentially of two pieces of WD-1010 steel which 
are joined at the lower periphery by a 360° crimp. The upper part of the 
mine body is formed by a deep drawing operation which results in very inhomo- 
geneous materials properties. The central cavity shown in the lower halves of 
Figures 1 and 2 is filled with 10 kilograms of composition B explosive. This 
filling operation is done with the explosive in a molten state. 

The normal method of activation of the fuze is by means of force applied 
to the pressure plate (1250 to 2000 newtons) which in turn is transferred to 
the belleville springs. At a certain deflection, the helleville springs snap 
through, driving the firing pin into the detonator. The explosion of the 
detonator activates the tctryl booster which in turn detonates the primary 
composition B charge. There are two auxiliary fuze wells on the M-15 mine 
which give it an anti-disturbance capability (See Figure 2). 

B. Guidelines for the Numerical Model. In keeping with the 
philosophy of identifying a failure mechanism which is as general as possible 
and is not dependent upon some specific design feature, the pressure plate, 
fuze, and hclleville spri.ngs were omitted from the finite element model. This 
was done in consonance with the previously stated guideline of not identifying 
failures of the fuze components. The part of the mine which constitutes OUT 
model is shown in the lower part of Figure 2, not including the secondary fuzes 
and filling hole. 

There are a large number of antitank mines, both foreign and of U.S. 
manufacture, which consist basically of a round Thin metal body filled with 
explosive. This type of antitank mine constitutes a large part of the 
inventory of U.S. and Soviet mines. The component which is most distinctive 
is the fuze mechanism. There are a variety of radically different fuzes for 
these mines, different both in mechanical design and different in the selection 
of some particular signature of combat tanks which is required to activate the 
fuze train. Therefore, the numerical model adapted for the M-15 mine is 
representative of a basic, necessary component of a large class of both 
foreign and U.S. mines. 

The auxiliary fuze wells were eliminated f,rom the finite clement model 
fox two reasons, First, these fuze wells make The mine body more susceptible 
to damage due to stress concentrations which occur in the neighborhood of the 
joint between the secondary fuze and the mine body. Thus, the simplified 
model is more conservative in terms of the blast load required for mine defeat. 
Secondly, the inclusion of thcsc wells in the finite element mesh would have 
necessitated the use of a three-dimensional (3-D) finite element model.. The 
3-D model would have required a very large increase in the amount of computing 
time used in obtaining the dynamic response of the structure. The four lobed 
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shaped dimples in the base of the mine body shown in Figure 2 were omitted 
for the same reasons. The result of these simplifications was a Z-D model 
in which we needed consider otlly a pie shaped section of the axisymmetric 
body. 

C, Base Support and Surface Loading. When employed in the field, 
mines of the M-15 type are usually buried Ga covered with a shallow layer of 
soil for concealment. In a few cases, the mine may be placed on the surface 
and covered with grass, leaves, etc., for concealment. In either case, the 
mine will experience a transient pressure load on its top surface when the 
countermine explosive is detonated in the vicinity. For buried mines, the 
sides will experience a lesser pressure pulse, the magnitude of which will 
depend on several factors such as how well the soil is tamped, type of soil, 
and depth of burial. The base of the mine will pick up a load at a later 
time from that of the top surface loading, The magnitude and shape of this 
base support will depend upon the downward acceleration/movement of the mine 
and the dynamic properties of the soil medium. 

The method used to simulate the soil support was by means of nonlinear, 
upward acting springs. The detailed description will he given in the next 
Section. This calculation will he referred to as Case A. 

In order to compare the predicted structural response with experimental 
data presented in Reference 1, a second base support condition was used in 
which the motion of the base in the vertical direction was restrained. This 
support condition will be referred to as Case B. 

The boundary support configurations for Cases A and B are shown in 
Figure 3. Also shown there are the portions of the surface that were loaded. 
In (Case A, the mine is simulated as being buried in soil up to its top 
surface; whereas, in Case B it is assumed sitting on a rigid surface. 

Reference I describes some experiments conducted with mine clearance 
types of explosives. In these experiments, two types of IJ.S. mines were 
exp3scd to the resulting blast loading. The pressure pulse used in this paper 
was designed to simulate the peak pressure and impulse measured in these 
experiments. The peak pressure was 13.8 MPa and the impulse delivered was 
6.5 kPa-sec. A decaying exponential function was fitted to these parameters 
resulting in the following equation 

P(t) = 13.76 c -2117t (13 

A curve of this function varying in time is shown in Figure 4. All points on 

the surface of the mine indicated in Figure 3 were loaded with this transient 
load beginning at zero seconds. 

3. MATERIAL PROPERTIES AND FAI LIJRI' CRITERIA. Material properties were ._--- 
required for thesteel jacket, the composition Rexplosive filler, and the 
soil in which the mine is emplaced. Of those three, mechanical properties 
were measured only for the steel jacket. The data for the explosive and soil 
were taken from available publications. Failure criteria are developed for 
the steel jacket and the explosive. 
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A. WD-1010 Steel. The M-15 jacket is made of a medium strength 
steel alloy with a density of 7.80 g/cm3 and a thickness of 0.94 mm. six 
tensile specimens were cut from an inert training mine as shown in Figure 5. 
Two specimens were cut from each of the significant surfaces of the mine body. 
These specimens were machined with a large radius on the test section as 
shown in Figure S(b). A biaxial strain gage was attached at the location of 
the minimum width. The specimens were then tested in an Instron Testing 
Machine. The stress-strain curves resulting are shown in Figures 6-8, 
plotted in pairs according to the location of the specimens on the mine 
surface . The stress-strain curves for the pairs of specimens are similar 
when comparing a curve with that of a mating specimen, but were surprisingly 
dissimilar when compared with specimens taken from different areas on the 
mine body. Of the three pairs of stress-strain results, the data for the top 
annular surface showed the most disparity, The other two sets of data 
indicate very closely matched properties. It is evident that the metal is 
work hardened in various areas by the stamping operation by which the upper 
part of the mine jacket is shaped. 

As can be seen in the vertical section in Figure 2, the jacket is formed 
from two sheet steel blanks, which after being shaped are joined by a 360" 
crimp around the lower periphery of the mine. The bottom of the mine was 
assumed to have the same properties as the pressure plate well area because 
neither are deformed appreciably in the forming operation. The metal in the 
pressure plate well area exhibits properties typical of mild steel (Figure 6). 
There is a slight overshoot of the yield stress, a relatively flat, low 
modulus section followed by a large strain to failure. 

Bilinear approximations to the stress-strain curves are also shown in 
Figures 6-8. These bilinear approximations were obtained by averaging the 
data for the individual specimens. The version of the ADINA (References 3 
and 4) finite element code used in this analysis has a bilinear, elastic- 
plastic, von Mists yield condition, kinematic hardening, axisymmetric 2-D 
element which was used to model the steel jacket. A summary of the signifi- 
cant parameters is given in Table 1. 

Because the steel in the mine jacket has an appreciable amount of 
ductility, it was desired to apply a failure criterion which included a 
measure of the deviatoric strain. The deviatoric strain is defined by the 
usual formula 

E a .  .  

"J 
=  Fij -  “ k k  ij 

6  / 3  

where 

Zij is the dcviatoric strain component 

E.. 
11 

is the total strain component 

(5. . is the Kronecker delta 
IJ 

and repeated indices imply a summation, The strain i.s assumed composed of an 
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elastic and a plastic component such that 

E 
ij 

=EE +EP 
ij ij * 

The plastic component of the spherical strain is assumed zero, i.e., 

P Ekk = 0. 

Upon substitution of Equation (3) into Equation (2) and using an equation 
similar to Equation (3) for the total deviatoric strain, S+ *, and further 
using 13 

8.” E 
lj 

E 6 = Eij - Ekk ij 13, 

and Equation (43, one finds the result 

“Z = EIj. 

(3) 

(5) 

The criterion which was selected to predict failure of the steel casing 
material was the second invariant of plastic deviatoric strain, X2(8'). This 

quantity is defined by 

I 2 (EP) = $ PP $ "ij ij (6) 

where summation is implied. 

In the uniaxial tension test where the load is applied in the z-direction, 
we have 

such that 

Thus, for 1-D tension test we have 
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The value of this quantity at the failure strain can be obtained from the 
l-.9 tensile test data given in Table 1 by the formula 

FP uzz 
=:E - 

f zz f 
ozz /E 

f y 

where E 
Y 

is Young's modulus. The value of the stress, uzz, at the failure 
strain is given by (writing the quantities without the zz subscript for 
convenience) 

=o +,E 2 Y t (Ef - ay/Ey) 

where 
OY 

is the yield stress, and 

Et is the plastic tangent modulus. 

Upon substitution of Equation (10) i.nto Equation (93, one finds for the 
de,viatoric plastic strain at failure 

&; = (Ef - oy/Ey)(l - Et/By) 

(10) 

Cl13 

where all the quantities in this equation arc measured in the 1-D tensile 
test. 

The values of the invariant I2 tiy-D 
( ) 

at the failure strain are listed 
f 

in Table 1. It is of interest to note that the values of this quantity range' 
over nearly two orders of magnitude for the three sets of tensile specimens. 

B. Composition B-3 hxplosive. 
viscoelastic>terialxs is 

"-_ Composition B-3 explosive is a 
available in three forms, pressed, cast, and 

powder. In most munitions, the explosive is normally inserted into its 
container by pouring in the molten state, so that it is called cast. 
Composition B explosive and composition B-3 explosive are similar, but the 
B-3 form has no wax content (Ref. 5). 

RDX TNT Wax 

Composition B 63% 36% 1 % 

Composition B-3 60% 40% --- 

The materials properties used herein are those for composition B-3 and arc 
taken from Reference 6, primarily. 

After surveying the available material properties of composition B-3 
er:plosive and the various Z-D axisymmetric materials models in the ADXNA code, 
it was decided that the curve description matcri.al model was the appropriate 
model to use (See pp. XII. 16-21 of Ref. 3). This model requires tables of 
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bulk moduli and shear moduli versus volume strain. Specifically, the loading 
bulk modulus, the unloading bulk modulus, and the loading shear modulus as 
functions of volume strain are required. 

A relationship between the volume strain and the bul.k modulus was 
obtained from the MielGruneisen equation of state (EOS) and certain other 
assumptions which are detailed in Reference 7. The equation relating the 
bulk modulus to the volume strain is 

where 

K = the loading bulk modulus 

r = the Griineisen coefficient 

A,B,C = the coefficients appearing 

A' = A (i-+1) + 2B 

B' = B (T+2) + 3C 

C' = c (T+3) 

in the Gr&eisen EOS in terms of 11 

u = E&l-E,) 

E 
V 

= (vo-wvo I volume strain taken positive in compression 

vO 
= l/p0 = specific volume at normal conditions. 

The values taken from Reference 6 for the materials constants are as 
follows: 

pO 
= 1.68 g/cm3 

1' = 0.947 (Assumed invariant as a function of V) 

A = 13.5 GPa 

B = 9.5 GPa 

C = 100.6 GPa 

v = 0.29 = Poisson's ratio 

Note that when E,, = 0, p = 0, IS~ = A and V = Vo. 
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Also, in the GrGneisen EOS, at TV = 0, we take the pressure and internal 
energy to be zero, Po = Eo = 0. 

Because no data were available to relate the unloading bulk modulus to 
the volume strain for composition B-3 explosive, the same values of the bulk 
modulus for unloading as for loading were used. The loading shear modulus 
was obtained from the loading bulk modulus by use of the relationship 

3Q1-2u) 
% = 2(l+v) * Cl31 

Figure 9 shows the graphical relationship represented by Equations (12) 
and (13). Table 2 gives the values of the two moduli as they were used in 
the ADINA program. ADINA uses linear interpolation between discrete points. 

The tensile volumetric strain at failure for composition B-3 explosive 
is given in Reference 6 as -0.1 per cent. This criterion was used in all 
calculations presented in this report. The technique used in the ADINA code 
to apply this failure criterion is by the artifice of superimposing on the 
applied load-produced strains, an in-situ gravity pressure suffic-ient to 
cause a hydrostatic compression equal in magnitude to the tensile failure 

TABLE 2. ADINA INPUT VALUES FOR BULK AND SHEAR MODLJLI FOR 
COMPOSITION B-3 EXPLOSIVE 

Point No. 

1 0 13.52 13.s2 6.60 

2 1.0 14.00 14.00 6.84 

3 2.5 14.91 14.91 7.28 

4 3.75 15.83 15.83 7.73 

5 5.0 16.92 16.92 8.26 

6 10.0 23.36 23.36 11.41 

strain. Then, when the total strain becomes negative, a tension cut-off 
plane is assumed to form normal to the principal strain. The normal and 
shear stiffnesses across this plane are reduced by a factor determined by an 
input value. One or two additional planes orthogonal to existing tension 
cut-off plane(s) are allowed to form if the strain criterion is met. The 
plane(s) becomes inactive if compression again develops in the direction 
normal to it. 

The pseudo-hydrostatic pre-strain is applied by positioning the vertical 
coordinate (z-coordinate) at the proper negative value. The hydrostatic 
pressure applied at an element integration point is given for an element, j, 
bY 
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N 

‘j = + ‘e c 
h. .z.. 

13 13 
i=l 

(14) 

where 

‘e is the density of the overburden 

hij is the shape function for node i of element j 

2.. 
11 

is the vertical coordinate for node i in element j. 

The position of the system vertical coordinate can be obtained from the 
equation 

f K E- 
ov 2 =I--- 

ave gpe 
1153 

where 

K 
0 

is the initial bulk loading modulus 

cz f 
v is the volumetric failure strain, negative in tension 

E: is the acceleration of gravity. 

C. Soil Simulation. 
denoted by Case A, 

For the structural response calculations 
nodal tie elements were used to model the base support as 

non1 inear springs. No simulation of the soil was necessary for the rigid 
support calculations of Case B. 

The nodal tie element is an clement which is available in the Ballistic 
Research Laboratories version of the ADINA code. Of the three types of nodal 
tie elements available, the one which was appropriate was the boundary type 
element. This element is defined by one node only and is capable of three 
translational degrees of freedom (DOP) and three rotational DOF’s. In the 
appl ication at hand, the elements along the base of the mine were used to 
transmit a vertical force (F,), while those along the side transmitted a 

horizontal force (Fy) . 

Due to the large variety of soils in which mines would be emplaced, it is 
obvious that one can only select a soil simulation model which would be 
representative of some subclass of soils. With this in mind, a typical load 
deflection curve (Reference 8) was selected to define the nodal tie element 
properties. The average load-deflection for the elastic loading range given 
in Reference 8 is .OSlS MPa/cm (30 psi/inch). The load-deflection response 
quoted is for slowly varying loads. For shock loads, the soil would be stiffer. 
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In an attempt to account for the dynamic response of soil, a nonlinear 
quadratic component was added to the force-deflection property. The magnitude 
of the nonlinear response term was made equal to the linear component at a 
deflection of 2.5 cm. The nodal spring constant and spring force as a 
function of vertical displacement are shown in Figure 10. These values were 
used for the nodal tie elements along the base of the mine. It should be 
noted that when the displacement is positive, the spring force and spring 
constant are zero. 

For the support along the vertical sides of the mine, a linear spring 
force is used. This was done with two thoughts in mind. First, the movement 
of the mine in the lateral direction is small. Second, the soil on the sides 
of the mine is disturbed when the mine is emplaced and the soldier is not 
going to tamp the soil there, except lightly, while the mine is armed. 

In the ADINA input data, the foregoing nonlinear stiffness values are 
adjusted by a factor proportional to an annular sector of fl radians and a 
radial extent appropriate for the particular nodal tie element. Along the 
vertical side, the linear nodal tie element stiffness values are proportional 
to the height of the particular element onto which the nodal tie boundary 
element is attached, 

4. FINITE ELF&lENT MODEL DESCRIPTION AND CALCULATIONS. 

A. Mesh Generation. The finite element mesh for the mine was 
generatedxith the aid of the GENSD mesh generator code (Ref. 9). The 
resulting mesh for the steel and explosive element groups are shown in 
Figures 11 and 12. A six node QUAD element with quadratic displacement 
interpolation functions in the direction parallel to the surface was used for 
the steel casing. This element models the bending of the thin metal casing 
better than a four node QUAD. A four node QUAD was used to model the 
explosive except at the material interface. 

In ADINA, each material having a distinct model for response must be 
modeled as a separate element group. For the Case A calculations with the 
nodal tie support elements, four element groups were required: (1) linear 
node ties on the side of the mine, (2) nonlinear node ties on the hase to 
simulate soil support, (3) nonlinear 2-D solid elements for the steel case, 
and (4) nonlinear curve description Z-D solid elements for the explosive. 
For the steel case, three material subtypes were used to model the steel 
properties as shown in Table 1. The assignment of the material subtypes to 
the areas of the mine case is shown in Figure 11. For the Case B calculations, 
the nodal tie element groups were not required. 

B. Time Step Solution. In ADINA, one has the choice of marching 
the dynamic solution forward vi& explicit or implicit finite difference tech- 
niques. In general, it is difficult to make absolute statements as to 
which is best for a given application. For shock loads such as indicated in 
Figure 4, it has been our experience that the explicit method gives the 
higher quality solution. The subject problem was run for a relatively large 
number of cycles using both implicit (with equilibrium iterations included) 
and explicit time integration solutions. After a given amount of problem 
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solution time, the results were compared. The explicit solution had a 
smoother variation in both displacements and stresses, For this reason, we 
selected the explicit solution method. 

The time step selected for the explicit scheme was sized to the thick- 
ness of the metal casing. 

*t= AR = -- .00094 
---T- - 60 nsec 

3 Ey/p IL--- 
3[2 x 10”/78003~ 

A time step of 50 nanoseconds was used for all calculations. 

Eigenfrequencies and mode shapes were calculated for the lowest four 
modes fox both Cases A and B. The result is shown in Table 3 for the former. 

TABLE 3. EIGENFREQUENCIES AND PERIODS 

Case A Case B 

Frequency 
(q-1 

Period 
Csec3 

Frequency 
CCPS) 

Period 
Csec) 

X-l.44 2.744 x 10s2 (Rigid Body Mode) 6426 1.556 x 1O-4 

3636 2.750 x 1W4 7899 1.266 x 1O-4 

6710 1.490 x 1o”4 968s 1.032 x lO-4 

8531 1.172 x 1O-4 12186 8.205 x 1O-5 

The 0.5 x 10-7 second time step may be compared to the 1.5 x lo-” second 
period of the fundamental mode of the rigid support configuration. It is 
readily seen that there is no danger of not capturing the response of the 
fundamental eigenfrequency as well as many of the higher frequency modes. 

c. ADINA Program Modifications. Three significant modifications ta 
the ADINA program were required in the course of performing the calculations 
herein q First, it was necessary to correct the stress state to lie on the 
yield surface to a higher order of accuracy than that fulfilled in the 
standard ADINA program. In the ADINA program, the von Mises yield criterion 
may be applied as 

where 

c c. ij ij c 2/3 us2 

c.. = Sij - a.. 
13 1J 

S ij = deviatoric stress component 
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u.. 
1J 

= tensor defining the center of the current yield surface 

0 s = current yield stress. 

Upon taking a time step during which plasticity occurs, the new yield 
criterion is 

( “ i j  
f ACij)(".. 

13 
+ AZij) G 2,'3 os2. (173 

The quadratic term, ACijAXij, was neglected in ADINA and caused the stress 
state to gradually creep outside the yield surface. At some point, this 
causes a negative square root to be encountered, which in turn, aborted the 
solution. Upon inclusion of the second order correction, no further 
difficulties of this type were encountered. Further details of this correction 
may be found in References 10 and 11. 

The second major modification of ADINA involved the addition of sub- 
routines and modification of current routines to allow the monitoring of 
extrcmal principal stresses and strains for the steel element group. ADINA 
normally does not print strains, and extremal values of the stresses are often 
difficult to discern. The routines included here check the values of the 
three principal stresses and three principal strains at each time step 
against currently stored maxima/minima for similar quantities. Any new 
extremal values found are placed in a save table which also includes the time 
and location of occurrence as well as a snap shot of the Cartesian stress- 
strain state. This table may be printed when desired. It is also included 
in the restart file for consistency. 

The third modification of ADINA was required to monitor the failure 
criterion for the steel casing, Provision was made to input for each 
material subtype the 1-D measured value at failure of the second invariant 
of plastic strain. At each integration point for each element for each time 
st<:p, the 3-D value of 12(&I-D) is calculated and compared to the indicated 

failure value for that material. Information is saved, giving the maximum 
value of 12(Ei-D) for each element as well as the integration point number 
and the time of occurrence, A compact table is printed as desired showing 
for each element whether plasticity has occurred; if it has, what the maximum 
va:!ue of 12(&:-,) is; whether the value has exceeded the input failure value; 

and if so, at what time and location. 

5 . . ANALYSIS OF RESULTS. The output from these calculations included 
the usual printed output from ADINA giving Cartesian displacements and stresses, 
forces in the node tie elements, as well as the tahles of extremal stresses 
anti strains and tables associated with the failure criteria. In addition, 
plot files were saved every 2.5 microseconds, giving a complete picture of the 
solution. The latter were used in conjunction with two post-processors, 
PLOTlD and PLOT3D (Ref. 9) to provide a graphical picture of such quantities 
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as deformed shapes, contour plots of various stress and strain components as 
well as time varying plots of quantities of interest. 

The calculations for both Case A and Case B were carried out to a 
response time of 2 milliseconds. For Case A, four failures of the steel 
jacket were predicted as shown in Figure 13. The failures predicted were 
all in the area of the primary fuze well, However, other areas on the steel 
jacket had significant plastic flow during the first two milliseconds of 
response (2nd invariant of plastic strain attained at least one-half of the 
failure value). Figure 14 shows the deformed shape of the configuration at 
the time of the first predicted failure in the steel jacket. Xn order to 
make the deformation of the structure more meaningful, the rigid body motion 
on the vertical springs has been subtracted out. Also, the vector displace- 
ment as measured from the reference points, indicated by the crosses, has 
been magnified by an appropriate factor. Figure 15 shows a contour plot of 
the hoop stress in the critical fuze well area at the time of the first pre- 
dicted failure. It is readily seen that there are strong bending stresses 
occurring near the corners of the fuze well. Figure 16 shows contours of 
constant radial strain at this same time for the nonlinear spring supported 
configuration. 

Figures 17-20 show similar plots for Case B with the rigid support as 
Figures X3-16 show for Case A. For Case R, it was not necessary to subtract 
rigid body motion since the base of the mine is restrained in the vertical 
direction. Notice that the first failure for Case B occurred earlier than for 
Case A and the center of fuzc well is deflecting downward rather than upward. 
In Case B, the vertical sides of the mine were loaded by the transient pres- 
sure. In general, Case R is a much more highly constrained structure than 
Case A. The deformation of Case R at approximately 4 microsecond time is 
generally inward in compression. Figure 19 shows the center of the fuze well 
with intense stress gradients. From Figure 20, it is evident that this area 
is undergoing a rather strong shearing action. 

The printed output from these calculations showed that the explosive 
filler was developing cracks in many locations and directions according to the 
-0.1% tensile failure criterion. These cracks were indicated very early in 
the response and continued to develop at latex times. Thus, we expect the 
internal mass of explosive to be nearly pulverized by the time of the casing 
ruptures indicated. Whenever the casing ruptures, it is assumed that a large 
volume of the explosive would be ejected. This was, in fact, the indication 
in the tests conducted (Ref. 1). It is not possible to compare the deformed 
shapes resulting from the tests described in Reference 1 with those predicted 
herein. The only results given in Reference 1 are photographs of the final 
result of the deformation. Also, for economy reasons, the calculation was not 
run far enough to get a final deformed shape. 

Shown in Figure 21 is the motion of the center of mass of the mine for 
Case A as a function of time. It is seen that the mine is deflecting into 
the soil under the intense pressure pulse. At approximately 1.4 milliseconds, 
the spring forces and the transient top surface load equilibrate. Thereafter, 
the base support load becomes larger than the surface loading and the mine 
begins to decelerate. At 2.0 milliseconds, the average pressure differential 
between the surface loading and the base reaction is 1.28 MDa. 
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6. CONCLUSIONS ~ The 
central fuze cavity at the 
in both the spring support _. _ 

M-15 mine is predicted to fail in the area of the 
13.8 MPa peak pressure, 6.5 kPa-set impulse level 
and rigid support conditions. Th.is agrees with 

experimental tests, which showed catastrophic failure of the metal casing 
and ejection of the secondary fuze wells. 

The explicit time integration method gave the most accurate results for 
the shock loaded mine. This statement is based on the smoothness of calculated 
displacements and stresses. 

The M-15 mine case is highly inhomogeneous in its constitutive structural 
properties. Follow-on work should take account of these inhomogenities. A 
liberal sampling of stress-strain data measurements is indicated for such deep 
drawn thin metal components. 

Second order corrections to assure that the stress state is on the yield 
surface during plastic flow are required. 

The soil medium supporting the mine and the nature of the loading of the 
sidewall have a significant influence on the resulting response. It is 
recommended that the soil medium be included explicitly in any additional 
studies. Attenuation of the shock in the area of the sidewall should be 
investigated. 
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ON THE ACCURACY OF FLOW RULE APPROXIMATIONS lJSED IN STRUCTURAL AND 
SOLID RESPONSE COMPUTER PROGRAMS 

.Joseph M. Santiago 
U.S. Army Ballistic Research Laboratory 

U.S. Army Armament Research and Development Command 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. Computer programs for calculating the elastic-plastic response of 
struz=nd solids employ a variety of plasticity algorithms which basically 
differ in the approximations used for the flow rule and the yield condition. This 
paper focuses on the linear kinematic hardening model of plastic behavior, presenting 
a numerical comparison between a number of commonly used approximations and an 
exact solution to this model. The exact solution is obtained by quadrature based 
on assuming proportional straining during an increment, Comparisons are presented 
for biaxial and triaxial states of stress and recommendations are made as to the 
"besttt approximation and the "optimum" number of subincrements needed for a given 
accuracy. 

1. INTRODUCTION. Computer programs that treat the elastic-plastic behavior - 
of materials usually employ an incremental approximation to the plasticity equations, 
with the stress being calculated at discrete steps. This usually entails using a 
finite difference approximation to the flow rule. In addition, for the sake of 
simplicity, a linear approximation to the yield condition is often imposed on the 
stress, 

This paper concerns itself with code approximations to linear kinematic 
hardening based on the Prager model of a yield surface translating in stress space 
(ref. I.). The von Mises yield condition is employed with the associative flow 
rule. Hardening is taken to be proportional to the plastic strain. Elastic- 
perfectly plastic behavior is automatically included in the analysis by setting 
the hardening parameter equal to zero. Both biaxial (plane stress)and triaxial 
states of stress are analyzed. 

2. REVIEW OF PLASTICITY EQUATIONS. We briefly summarize the Prandtl-Reuss 
theoFof elastic-plastic behavior (ref. 2) as background. The theory assumes 

the .additive 

plastic strai 

decomposition of the strain cij into an elastic strain ~1; and a 

P n E.. 
1J 

E.. 
11 

= ET P * 
j + % 

Cl 

"CartesIan tensor notation, including the summation convention, is employed 
throughout, with Latin indicies i, j, k, _.. = 1, 2, 3 and Greek indicies 

a, 6, ii, ..* = 1,;. 
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with the plastic portion taken to be incompressible 

2 =o 
kk 

The stress 0.. 
1J 

is assumed to be related to the elastic strain through Hooke’s 

law for an isotropic material 

where E is Young’s modulus and v is Poisson’s ratio. As already mentioned, the 
Prager model of kinematic hardening (ref. 1) is assumed, so that the von Mises 
yield condition takes the form 

where 

Ix c. 2 2 
2 ij lj 3 ‘y 

c 
ij 

= s.. - a.. 
17 1) 

of the yield surface in stress space, and S,. is the deviator of the stress: 
1J 

(63 ‘ij = ’ 
CURRENT LOCATION 

OF YIELD SURFACE 1 

1 
ij - 3 okk ‘ij 

r INCREMENTAL SHIFT 
IN YIELD SURFACE 

and 0 
Y 

is the yield stress from a uniaxial tensile test, a.. measures the translation 
IJ 

Fi 

YIELD SURFACE 
BEFORE PLASTIC 3 --- 

DEFORMATION , 

gure 1. Representation of the von Mises yield condition in stress space as 
viewed along the diagonal from the positive tensile stress octant. 
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As shown by Figure 1, in stress space the yield condition represents a cylindrical 

(hyper-) surface of constant radius (2/Z)‘* ay with its axis parallel to the 

diagonal from the origin into the positive tensile stress octant. Initially, the 
axis passes through the origin, but as plastic deformation progresses, the 
surface shifts in accordance with the hardening rule, which for a linear hardening 
model is directly proportional to the plastic strain 

a.. =ZEEP P (73 
1J 3, E-E 

P 
“ij 

where E 
P 

is the plastic modulus as specified by the slope of the stress-strain 

curve in the plastic range. Lastly, the plastic strain is determined using the 
associative flow rule, which for the von Mises condition is 

d& = c dh, 
11 ij (8) 

where ctX 2 0 is the flow parameter which is adjusted so as to maintain the stress 
on the yield surface during plastic flow. Combining (7) and (8) we see that 
instantaneousIy the yield surface will translate in the direction of the normal 
at the point of stress application, as portrayed in Figure 1. As a special case 
these equations include elastic-perfectly plastic response by setting E = 0 
so that the yield surface does not translate. P 

For purposes of analysis in this paper, the foregoing equations are reduced 
to a fundamental set of equations 

dZij = dSe. - K L.. dj; 
13 13 

(93 

e E 
dsij = l+v 

r d’ij - f dE 
kk &ijl (10) 

2 2 
Zij cij = ‘j oy (11) 

on the unknown components of I.., where 
13 

2 l+u 

K=l+T E 1 -- 
E 

P 

depends on the mater 

Cl23 

ial constants and the flow parameter is redefined as 

di = & dX (131 
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In equation (9) dSe. 
13 

operates as a forcing function specified by (10) as a 

function of the prescribed strain differential. The yield condition (11) acts 
as a constraint on the values of C... 

1J 
The flow parameter is controlled so that 

di = 0 when the stress is inside the yield surface or when Cij dSFj < 0 and the 

stress is on the yield surface; otherwise, when 1.. dSe. > 0 the flow parameter 
1J 13 

takes on positive values that assure that the stress is maintained on the yield 
surface. The solution of the system determines the history of the stress at a 
point as a function of the strain history. 

In the case of biaxial states of stress or plane stress situations, where 
the stress components for one coordinate, for example the 3 coordinate, vanish: 

Y3 = ‘23 = ‘33 = 0, the previous system reduces to 

where now the prescribed forcing term is 

and a second material parameter appears 

= 1 l-2V 
u - 3 l-v 

(14) 

(15) 

(17) 

This system turns out to be more complicated than the system for triaxial states 
of stress principally because of coefficient 11. 
(v = 

For incompressible materials 
$) p vanishes and the two systems behave similarly. It should also be noted 

that the yield condition (1s) is now represented by an ellipsoid with a major 
axis along the u12 coordinate axis and the remaining axes in the plane of the 

?, & and o2,, coordinate axes at angles of 35” to these axes. 

3. CODE APPROXIMATIONS TO PLASTICITY EQUATIONS. As already pointed out, 
computer programs for calculating the elastic-plastic response of bodies commonly 
determine the strain and the stress throughout the body at discrete time or 
loading steps. The usual procedure involves first determining the change in 
the strain from the prior step to the current step without recourse to plasticity 
equations. Then the values of the stress and the strain at the prior step and 
the strain at the current step are used in a plasticity algorithm to calculate 
the current value of the stress. Some programs will iterate on the current strain 
and stress values, but basically plasticity algorithms involve the determination of 
a current stress from a prescribed strain increment and a known prior stress. 

* 
Greek indicies are over the range 1, 2. 
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Because the strains are prescribed at discrete intervals, plasticity algorithms 
are almost invariably based upon plasticity equations in which finite differences 
replace derivatives. Hence, for example, in the case of triaxial stress, given: 

0”. 
iJ 

= prior value of the stress, 

E?. = prior value of the strain, 
iJ 

E.. 
11 

= current value of the strain, 

the plasticity algorithm will employ the following approximation to equation (9) 

ax.. = 
11 

dj - K crj Ajl 

where 

is known from the prescribed strain increment AE. . = E.. - 
iJ 

EO . and where 
1J 1J 

(18) 

1203 

is some intermediate value between the prescribed prior value C!. and the as 
13 

yet to be determined current value C.. = To + AC. 
iJ “ij lj * Equation (18) can be regarded 

as a forward, central, or backward finite difference depending on the value of w: 

0 ; forward difference 

w= $ ; central difference 

1 ; backward difference 

A :jecond approximation often employed in algorithms (ref. 3, 4) involves 
replacing the yield condition imposed on the current value of the stress by a 
linear approximation to this condition. In terms of the previous example, this 
means that rather than the current stress satisfying the exact yield condition 

2cqj AE.. + AZ.. AC.. = 0 l 

II 13 iJ 

it is required to satisfy the linear approximation 

(21) 

* 
This relation follows from (11) on assuming that the prior stress satisfies the 

yield condition. This is safely assumed since a simple elastic calculation can 
be used to eliminate any portion of the strain increment inside the yield surface, 
for example see Table 4 m 7 in ref. 5. 
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2 fj AC. + = 0 
13 

(22) 

This approximation assumes that the stress increment is small enough to permit the 
square terms to be neglected in comparison with the linear terms. However3 the 
approximation results in an error by computing a stress outside the yield surface. 
To understand the reason for this, 
stress space, 

consider equation (22) as a vector relation in 
as illustrated in Figure 2 for the case of a forward difference 

Figure 2. Illustration showing how the use of the linearized yield condition 
determines a stress increment outside the yield surface that requires 
correcting. 

(w = 0) flow rule approximation. Equation (22) requires the stress increment 
ALP.. 

13 
to be perpendicular to the direction of the yield surface normal and hence 

tangent to the surface. Because the van Mises surface is strictly convex, the 
increment will determine a stress outside the yield surface unless a correction 
is applied, as for example shown in Figure 2 where a corrected stress increment 

cc. 
13 

is obtained by a radial correction. As pointed out in references 6 and 7, 

the lack of a correction in the kinematic hardening subroutine of the ADINA finite 
element program (ref. 3) had been found to cause a premature termination due to 
the cumulative effect of uncorrected increments. A correction to this subroutine 
based an the combined use of a central flow rule approximation and the exact yield 
condition has been implemented in the ADINA code and is detailed in reference 7. 
On the other hand, when the exact yield condition (20) is used, as illustrated in 
Figure 3, the parameter AA takes on just the right value to give a stress on the 
yield surface. 
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Figure 3. Illustration showing how the use of the exact yield condition maintains 
the stress on the yield surface. 

!Vhile the use of the flow rule approximation is more or less dictated by the 
discrete nature of the code calculations, the use of the linearized yield condition 
is hard to justify. Since modern computers can solve complex algebraic relations 
very efficiently, there seems little reason not to use the exact quadratic expression. 
In fact, in the case of triaxial stress, when the exact condition (21) is used, 
the equation to be solved for Ax is at worst quadratic and if the central flow 
rule approximation (w = $3 is used the relation on ~,i; becomes linear (ref. 7). 

It is not uncommon practice in codes (ref. 3 and 8) to subincrement the nlasticitv 
algorithm in order to increase accuracy, Subincrementing involves dividing the 
strain increment into a number of equal subincrements, as depicted for example in 
Figure 4 for three subincrements. The plasticity algorithm is applied sequentially 
to each subincrement with the prior stress being updated at each step: Z~.+Zf.-+C? 

1J iJ 1.j' 
so that the normal direction changes at each subincrement step. In this way, 
subincrementing results in a closer simulation of the differential system (9) through 
(11) - Subincrementing can be used with any of the flow rule approximations in 
combination with either the exact yield condition or the linearized condition 
(plus correction). We shall be evaluating the accuracy of a number of these 
approxknations by comparing them with an exact solution that represents 
the limit of the subincrement process as the individual subincrements go to zero. 

Corresponding remarks about approximating the flow rule and the yield 
conditian and about subincrementing also apply in the case of biaxial stress. 
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AS; 

/// 

FACE 

Figure 4. Illustration showing the division of the increment ASFj into three 
equal subincrements in order to increase the accuracy of the plasticity 
calculation. 

4. PROPORTIONAL INCREMENTAL STRAINING. In order to integrate the differential 
system (9) through (11) it is necessary to make an assumption about how the ,strain 
varies from the prior to the current step. We simply assume that the strain 
increases in some continuous way from its initial to its final value along the 
direction defined by the discrete strain increment. Hence, the components of the 
continuously increasing strain increment will be in the same proportion as the 
corresponding components of the discrete strain increment. In the case of triaxial 
stress, this assumption means that during the strain increment the forcing function 
SFj in (9) is proportional to the increment ASe.: 

i-1 

se lj = f(h) AS?. 
iJ 

where f(x) is a continuous function that increases from zero to unity as h goes 
from zero to Al. With this assumption, (9) becomes 

dCij 
- E df 
dx dh 

ASTj - K I:.. 
iJ (241 

where C;; satisfies the yield condition (11) for all values of X between the limits 
0 5 x j%. At the limits we have: 

x=0 =+ f=O & I.. = Pj 
II 

h = ni *f-l 6 xij = "pj f AC. 1 
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Equation (24) can be regarded as the continuous counterpart of the discrete flow 
equation (18) , For the case of biaxial stress, the corresponding assumption 
yields a similar simpIificatian of (14). 

5. TRANSFORMATION OF TRIAXIRL EQUATIONS. In order to facilitate the analysis 
of theurevious equations. a tranformation of coordinates in stress space is 

A  

required. For the triaxial stress case, we transform to a set of orthogonal 
coordinates in the plane of the vectors 1”. and A S.., while simultaneously 

iJ 13 
normalizing coordinates with respect to the yield stress Q . Y 

Although not necessary, 

for convenience one coordinate axis is made to coincide with the direction of 
c”. 

iJ 
by defining the basis vector a.. as follows: 

iJ 

\r 3 ‘Sj a =-- 
ij 2 0 

Y 
(26) 

It foll.ows from the yield condition (11) that aij is a unit vector (i.e., a.. a.. = 13 11 
13. Using the Gram-Schmitt process, a second unit vector bij orthogonal to the 

first (i.e., aij b.. 
iJ 

= 0) is defined by requiring that it satisfy the equation 

= ~~ aij + r12 bij 

The components of A ST., relative to this new basis will be 

Resolving Cij relative to this basis 

1 ‘ij - + T, b.. 
Y 

*1-J 

the components of C. . become 
11 

(27) 

(293 

It follows from (26) that initially these components will have the values -ri = 1 

and ~z = 0. By substituting (27) and (29) in (18)) the discrete flow equation is 
L 
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transformed into the pair 

ATE = n1 - T; AA & Ar 
2 

= 02 - x; AA 

where, as before, ‘; (a = 1, 2) are intermediate values: 

(31) 

and where the flow parameter is redefined as 

AA = K Ax 

With this transformation the yield condition (11) becomes the unit circle 

2 7 
T1 + r2- = 1 

which both the initial and final values of r 
1 and T 2 are to satisfy. 

(32) 

(33) 

(34) 

Applying the same transformation to the equation of proportional incremental 
straining causes the continuous flow equation (24) to reduce to 

dtl df d=2 df 
r=dfl y-1 E dn=dn n2-r2 

From (25) the limit values follow: 

A=0 *f=O 6 I” =‘cO a a 

A=AA”f=l E T =r’+At a a 3 
(363 

where a = 1, 2. The components -ta are required to satisfy the yield condition [34) 

continuously between the limits + The results of this transformation for bath the 
discrete and the continuous case are summarized in Table 1. 

The problem in transformed coordinates is portrayed in Figure 5, reduced to 
its essential ingredients. 
circle 

Because the yield condition corresponds to a unit 
it will be automatically satisfied when polar coordinates are employed. 

Hence, ’ let us set 

? 
= cos e I-‘. * 2 = sln e 

(372 
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Figure 5. 

where 

YIELD SURFACE 

Representation of triaxial stress problem 
coordinates. 

ing (37) Substitut 
equation 

(A STj A Syj)” 

OY 

into the continuous flow equations (351, we obtain a differential 

in transformed stress 

(38) 

(393 
de df = n sin (a-0) 

on the single unknown 3. Integrating this equation between the 1 imits (36) , we 
obtain the solution 

8-a tan - 8,-a -q 
2 = tan- e 2 

where eO represents the initial value of the polar angle 
Making a similar substitution in the discrete flow equat 
in 

and 0 the final value. 
ions (31) and (32) results 

(403 

sin (0-8,) = n [ (l-w) sin (n-00) f w sin (ix-O)] (41) 

Notice that both the discrete and the continuous solutions axe independent of the 
initial stress, as specified by 9,; tha.t is, both solutions are essentially 

424 



functions of differences 

We shall find that this is not true in the case of biaxial stress. It is for the 
sake of comparison with the biaxial case that we have chosen not to utilize the 
fact that initially B0 = 0, which earlier was shown to follow from (25). 

6. TRANSFORMATION OF BIAXIAL EQUATIONS. The transformation of coordinates 
for t5 biaxial stress case is composed of a rotation that brings the cooxdinate 
axes into coincidence with the principal axes of the yield surface ellipsoid 
followed by a normalization of the ellipsoid to a unit sphere. The transformation 
is defined by the equations 

3 Ill + c22 4 Ill - c22 c12 
7 = ? 

aY 
, '2= 2 

uY 
, -r 3=& - 

aY 
(433 

3 A?; + hu 
e 

22 v5 h"lY - hG y = y 
aY 

, 112 = 2 
aY 

, 
~3 4 Aal; 

aY 

so that ‘t a and ‘la (a = 1, 2, 3) are the transformed components of C aB 
and Aae 

a@’ 
respectively. Under this transformation the yield condition (15) becomes 

2 2 
? + T2 + r3 

* 1 
= (443 

On comparing (9) and (14) it easily follows that the discrete flow equation, 
which is the biaxial stress counterpart of (lS), is transformed into the trio 

A -rl = I=+ - (l-6) ‘; hA 

A ~2 = n2 - T; Ah 

A ~3 = ~3 - r; AA 

where r; (a = 1, 2, 3) are intermediate values as given by (32)) where hA is 

defined by (33), and where 

Similarly, the continuous flow equation for biaxia .l stress is tranformed into 
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dr2 -= 
dA (47) 

dt3 dfq 
- = dA dh 3 - ‘3 

where the limit values (36) apply with a = 1, 2, 3, 

For the sake of comparison, the transformed biaxial equations are also 
summarized in Table 1. It is clear that for both the discrete and the continuous 
equations, the triaxial stress equations are simFl_er than the biaxial stress 
equations, there being only two equations involved and these being more symmetric. 
The biaxial equations are more complex because of the occurrence of the 6 term 
which as we can see from (17) and (46) is caused by the e1asti.c compressibility of 
the material. In fact, when the material is incompressible, so that w = 15 andhence 
6 = 0, a simple coordinate rotation bringing a coordinate plane into the plane of 
the vectors r” and r( transforms the three biaxial equations into the two triaxial 
equations. * 

As in the triaxial stress case, because the yield condition for the biaxial 
case (44) corresponds to a unit sphere, it will be automatically satisfied when 
the angle coordinates 0 and 4, as given by equations 

? = cos a r2 = sin 0 cos J$ r* 3 = sin 0 sin Q, (48) 

are used. Writing vector rl in terms of angle coordinates: 

9 = ?-I cos la 71 2 = II sin ti cos y ?3 
= rl sin a sin y (49) 

where 

and substituting these and the previous relations in the continuous flow equations, 
a pair of differential equations on 0 and cp are obtained: 

de 
df= rl 

(1-S) cos6 since cos(y-9) - sin8 cosa 

l- 6 cos2e 
(51) 

de 
-= rl 

sina sin(y-ql) 
df 5 in0 

426 



These equations have so far resisted efforts to find an exact integral. 
Consequently, a simpler case of the biaxial stress equations was selected for 
study by assuming that $ = y (= 0 for convenience), so that only the single 
equation 

de= 
df n 

(l-6) co5 0 sin a - sin 0 co5 a 
1 - 6 CDS R (=I 

needs t83 be integrated. This equation still is more complex than its triaxial 
counterpart (39), again because of the 6 term. Physically it corresponds to biaxial 
stress situations in which the shear component of stress vanishes (i.e. o 23 = 
'23 = 0), as for example happens in cylindrical symmetric thin shell problems. 
In such situations the last of the discrete biaxial equations (45) is trivially 
satisfied, while the substitution of (48) and (49) into the first two reduces 
them to the single equation 

sin (Q-0,) - 6 (sin 8 - sin 8,) [(l-w) cos B0 + w cos 01 
= n {(l-S) sin a [ (1-w) cos B0 f w cos 01 (533 

- cos a [ (1-w) sin 0, + w sin e] } 

which is the counterpart of (41). Before analyzing these equations, we replace 
the angle a by f3, defined by the relation 

tan 6 = (1-S) tan a (54) 

so that (52) and [53) become: 

d0 (l-6 cos2 e) df = n' sin (B-0) (55) 

and 

sin (e-9,) - 6 (sin e-sin BO) [(l-w) cos B0 f w cos 81 

= q' [(l-w) sin (a-0,) + w sin (A-e)] 
(56) 

where 

= 7-j [co2 a + (l-q2 
2 1, 

n’ sin a]" (57) 

Notice that if 6 = 0, then, as expected, (5.5) and 156) reduce to the triaxial 
equations (39) and (41). 

The solution to (55) with the appropriate limit values is obtained in implicit 
form as 
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(58) 

where 

H(0) = " - 6 [ cos (WB) - cos (8o+8)] 
1 - 6 co2 5 

CS9) 

7. COMPARISON OF APPROXIMATIONS: TRIAXIAL STRESS. In this section we present 
a comparison of the differences between the exact solution to the triaxial case 
(40) and four particular approximations to (41): 

a. Forward difference (w=O) and linearized yield (22) (plus radial correction) 

b. Forward difference (w=O) and exact yield (21) 

C. Central difference [w=$) and exact yield 

d. Backward difference (w=l) and exact yield 

We have already noted that in the triaxial stress case the solutions are independent 
of 00, so that only ~1' and n need be varied, see Figure 5. For each value of c' 
and q the difference At3 between the value of 0' computed using one of the above 
approximations and the value using the exact solution will be determined. Due 
to symmetry, we need only consider values of M' between 0" and 90'; notice that 
when a' = 0 both the exact solution and the approximations give the trivial 
solution 0' = o for all values of n. The value of n, as we can see from its 
definition (38) or from Figure 5, measures the ratio of the magnitude of the 
increment &Se. 

iJ 
to the yield stress. The angle 8' (in radians) can be regarded 

as measuring the magnitude of the stress trajectory on the yield surface relative 
to the yield stress. 

The solutions for the four approximations can be obtained by geometric 
construction, as shown in Figures 6 through 9. The exact solution is obtained 
from (40): 

tan g = 
sinh 2 2 sin (x' 

cash 1 + sinh 1 cos cc' 2 2 

ifference between the value of 0' determined from an approx 
value is defined as the error: 

The d 
exact 

A0 = B’ Approx - 8’ Exact 

imat ion and the 

(60) 

Within the range 0" I CL' 5 90°, the solution 9' will be positive; hence, A0 will 
be positive or negative depending on whether an approximation over or under-predicts. 

428 



Figure 6. 

FORWARD DIFFERENCE 

A,r’= 7 -L’AA 
M 

LINEARIZED YIELD 

HfO*Az’=O 

RADIAL CORRECTION 
T’ 

7”:L 
- I IE’ I 

Solution for the forward difference and linearized yield condition 
approximation with radial correction. 

FORWARD DIFFERENCE 

A,r =r) -;‘AA N 

EXACT YIELD 

Figure 7. Solution fox the forward difference and exact yield condition 
approximation. 
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CENTRAL DIFFERENCE 
TO+; 

A,T =r) -x*AA ;;*= - 
H 2 

EXACT YIELD 

, , 

8’ 7 sin a’ 

+a”T= 2+7posal 

Figure S. Solution for the central difference and exact yield condition 
approximation. 

BACKWARD DIFFERENCE 
2 A,t=7-ryTAA 

H  

EXACT YIELD 

f”*f=l 
ry N 

Figure 9. Solution fox the backward difference and exact yield condition 
approximation e 
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In Figure 10 we plot the errors 118 at 5" interval in a' fox the four approximations 
with r = 10% and 50%. For both values of n the graphs show the same trends. When 
the exact yield condition is used, both the forward and central differences overpredict 
over the entire range, while the backward difference underpredicts. When the 
linearized yield condition and the forward difference is used, the approximation 
overpredicts over most of the range except near the end as II' approaches 90' where 
the error crosses over and underpredicts, Also, except for the central difference 
approximation which achieves its maximum error at the end of the range, all the other 
approximations reach their maximum errors more or less near mid-range. It is clear 
that over the entire range the central difference approximation is clearly superior, 
with only the forward difference/linearized yield approximation giving a smaller 
error in the neighborhood of the cross-over point. 

Table 2 gives the maximum error for each approximation over a range of values 

Table 2. Maximum Error as a Function of q 

.009007 .@10554 .000657 -. 008329 

.25 

I 

.013672 .016739 ,001274 -.012440 

.30 .019Lll. .0245oc .002181 -.01?116 

,35 .025306 .a34043 .r30342f) -.022X9 

.40 .032135 .045368 .005050 _ .a27999 

.45 .a39519 .OS8597 .007090 -,033943 

.5O -047354 .074306 .00X76 -.040110 

of q between 5% and 50%. At 5% the central difference approximation is about 60 
times more accurate than any of the other approximations. As q increases to SO%, 
the advantage of the central approximation diminishes to an accuracy of four to 
eight times greater thnrl its competitors. As is to be expected, the table makes 
cJc;lr the benefits of subincrement ing for nny approximation. For example, 
usiny the central difference appro:yi.mation, if n = .5, the maximum possible 
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.gure 10. Graphs of the error A8 for triaxial stress approximations versus the 
angle CL’ for two values of the ratio q. 
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error can be .009576; if five subincrements are used so that n = .l for each sub- 
increment, the maximum possible error is reduced to .000415; and if ten subincrements 
are u.sed, the maximum error is further reduced to .00020. It is also clear that 
if subincrementing is automatically performed whenever q > .05, then the central 
approximation will retain its 60 : I advantage in accuracy over the other approximations. 

8 . COMPARISON OF APPROXIMATIONS: BIAXIAL STRESS. In this section we compare 
the d%viations from the exact solution that result from three particular approximations 
to the biaxial stress equations. As remarked in Section 6, the comparison will not 
be for the general biaxial equations, but for the special case where the shear 
component vanishes. However, this comparison should provide some estimates on 
the magnitude of the errors connected with these approximations for the general case. 

The three approximations to be compared are: 

a. Forward difference (~0) and linearized yield (plus radial correction) 

b. Forward difference (~0) and exact yield 

C. Central difference (w=%) and exact yield 

The equation for the first approximation follows from equations (21)) (433, (45), 
(481, (49), and 154) after considerable manipulation and can be written in %ermS 
of polar coordinates as follows: 

tan 8’ = ” si.nB’ 

l-6 cos*eo 
(62) 

where 0’ and n’ are defined by (42) and (57.) and where 

with f3 given by (54). The equations for the second and third approximations follow 
from equation (56) after, setting w = 0 and %, respectively: 

[ Y(W)12 - 2(1-6 cos2eo) Y(e’) 

+ ql sinB’(qf sinfj’ - 2 6 sina, cose0) = 0 (643 

mm3 - [2(1-A co5 e,) + n’ COSB’] lY(e+ 2 

+ n’ sinBt (q’ sin 6’ - 4 6 sine, COS00) YCe’) 

- (ri’ sinBt)2 [ 2(1-d sin2eo) + n’ COS8’] = 0 (65) 

where the function containing the unknown 8’ is defined as: 



y(el) = 17' 'y' (66) 
tan 7 & 

Notice that the second approximation involves solving a quadratic equation for the 
unknown and the third involves a cubic. Interestingly, when these approximations 
are implemented in a computer code for the general biaxial stress situation, the 
equations used to determine the flow parameter increments Ah turn out to be, 
respectively, quadratic and cubic. 

The exact value of 8’ to which the above obtained approximate values will be 
compared is found by solving the transcendental equation (derived from (58) 
and (591) 

[COSB + X sin@) 2 f (COSB + X, sin@) 2 
26 

X 

1+x 2 1 + x, 2 = n ’ + (1-6 cos2B) ln x 
0 

for the variable 

where 

B’-9’ X = tan 2 (68 

(67) 

X, = tan g (69) 

This transcendental equation is easily solved on the computer using a Newton-Raphson 
algori thin e 

As in the previous section, the error is defined as the difference between the 
values of 9’ obtained from each of the three approximations and t.he exact solution. 
IJnlike the triaxial case, both the exact and the approximate solutions will depend 
on the initial value BO, so that now, in additon to a.’ and I-I, A, will have to be 
varied over a suitable range. Moreover, due to the e. dependence, the equations 
no longer have a trivial solution when ~1’ = 0 and the solutions are no longer 
symmetrically distributed about ~1’ = 0. Hence, a’ must be varied over the range 
values from -90” to +90°, whi1.e due to symmetry B0 need only vary from 0 to 90”, 
Also, the trival solution is obtained when 6’ = 0, corresponding to the value 

At this angle, exact and approximate solutions change sign. Therefore, to insure 
that over-predictions will be positive and underpredictions negative, the error 
needs to be redefined as 

At3 = 10’ ,4pprox - 
ig ’ 

Exact ] sign(R’ Exact) 171) 
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With this definition in mind, the errors resulting from solving the previous 
equations at 10" intervals in cx' for the values e0 = O', 4S", 90" and n = 10% 

(assuming that 6 = $) are plotted in Figure 11. Comparison with the n = 10% 
graph in Figure 10 shows that the magnitudes of the errors are approximately the 
same and that the same general trends persist: the central approximation is 
clearly superior and achieves its maximum error at the ends of the interval 
(a' = :'90"), while the linearized forward and exact forward approximations reach 
their maxima near the middle range (a' = +45"). We also see the effects of the 
dependence on the initial angle e0 in the diminishing errors as e0 : 0°+ 90" 
and in the shifting of the C0 = 0 solutions from the origin; e.g., when B0 = 45" 
the trivial solutions occur at n:, = 11,3", but at the values tiO = O" and 90" there 
is no shifting due to symmetry. 

Figure 12 shows the graphs of the errors for the same three values of tiO 
when r, = 50%. The general trends noted before axe still present with the central 
approximation still superior and comparison with the n = 50% graph in Figure 10 
confirms that magnitudes of the errors are still close. 

The comparison of the magnitudes of the errors between the triaxial and the 
biaxial cases suggests that for a given value of ar the triaxial error for each 
approximation is the average of the biaxial errors over the range of OO. This 
more or less is confirmed numerically in Figures I.3 and 14, where the errors 
using the central differences approximation with n = 10% are plotted against the 
angle 3, for values of Y' = O', 30°, 60°, 90'. Each graph shows how the error 
varies over the range -90" e. 9o" for 6 =i( p re resenting a genuine biaxial 

situation) and for 6 = 0 (corresponding to the triaxial situation, as remarked 
at the end of Section 7). We see that except for the case where ~1' = 0, the 
errors in the biaxial case do indeed tend to cluster about the error in the triaxial 
case. Hence, the errors computed using the simpler triaxial stress equations 
should provide good estimates on the magnitudes of the errors to be expected when 
using biaxial stress approximations, AS further confirmation of this supposition, 
we present in Table 3 for a range of values of QO, the maximum errors for the three 
approximations considered here when n = 10%. Comparison of these errors with the 
maximum errors in Table 2 when n = 10% shows that the errors arc of the Same order. 

Table 3. Maximum Error as a Function of Ho using the Biaxial Stress Approximations 
with n = .lO. 

0 o .003557 

15" .003257 

30" ,002920 

45" .002279 

.003782 

"004OS7 

.0037"76 

a002448 
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Figure 11. Graphs of the error AR for the biaxial approximations versus the angle 
c’ for three values of BO when ,-, =.lo. 
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9. SUMMARY AND CONCLIJS ION e The Prandtl-Reuss equations for a linear strain 
hardening material have been inte rated 

f 
exactly for a prescribed discrete strain 

increment for the cases of biaxia stress and triaxial stress. A comparison of 
these solutions with a number of approximations to these equations 
commonly used in response programs has been performed. The comparison shows that 
the central finite difference approximation to the flow rule in combination with 
the exact yield condition is the most accurate. For example, the maximum error 
using this approximation will be in the order of .Ol% of the yield stress for an 
elastic stress increment equal to 10% of yield. The comparison also enables us 
to quantify the beneficial effects of subincrementing in plasticity approximations. 
Hence, if subincrementing is automatically employed whenever the elastic stress 
increment exceeds 5% of yield, then the maximum error for an elastic increment as 
great as SO % of yield will be limited to approximately .Ul% of yield. Also, 
the comparison shows that the simpler triaxial stress analysis provides good 
estimates on the errors to be expected with the equivalent biaxial approximations. 

The central finite difference approximation, which strangely enough is little 
used, has been recently implemented in the ADINA response program (ref. 3 and 7) 
for the case of triaxial stress and will soon be programed for the biaxial stress 
case. It is also planned to implement the central difference approximation in 
the REPSIL (ref. 8) and in the PETROS (ref. 9 and 10) series of shell response 
programs at the earliest opportunity. 

An intriguing question that might have occurred to the reader is why not 
implement the exact solution. In the triaxial stress case where the solution (60) 
is explicit there is little doubt that it would be more effective, not so much 
in improving accuracy, for the central approximation is very accurate, but in 
obviating the need for subincrementing. Hence, the implementation of the exact 
triaxial stress solution is one item in future plans, 

As for implementing the exact solution in the biaxial stress case, the main 
objection is that the solution is for a special plane stress situation in which 
there is no shear stress component, Hence, the solution cannot be utilized in 
most programs that analyze plane stress or Kirchhoff shell problems. Moreover, 
the solution is implicit and requires some numerical scheme, such as Newton-Raphson, 
to obtain an answer; hence, there may be little to choose in terms of efficiency 
between solving for the implicit exact solution and using the central difference 
approximation with subincrementing. 
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ABS'mCT ~-- 

This paper describns two discrete-time I& regulator algorithms which have 
bten implemented and tested on a microcomputer-based sexvo control system IO- 
caii~!d in the Stabilization Research Laboratory faciI.ity at ARRADCOM. These 
olqorithms include reduced-order observers for estimating system states and 
Eisturbances, and IQ-based digital control laws for precision stabilization in 
the presence of external disturbances. 

1. INTRODLJCTJON --- -- 

Modern control theory and digital microprocessors represent two emerging 
technologies which have significantly altered the perception of the gun pointing 
and stabilization problem from that of an isolated subsystem design process to 
one in which all system state variables and error sources (including target- 
induced errors 111) are considered in the gun control law development. Refer- 
ence 123, in particular, illustrates the performance advantages associated with 
modern gun control law design. In this example, an LQ controller was designed, 
implemented and evaluated in live firing tests on a helicopter armament system. 
The dispersion associated with the modern control. design was 1.26 mr as compared 
to L-2 mr for the original design. The control law implementation in this 
effort was pcrformcd using fixed configuration analog electronics which imposed 
.praotical constraints in terms of exploiting the full benefits of modern Obser- 
ver theory and disturbance accomadation methodology. These constraints are, 
for the most part, eliminated by performing the control law implementation in 
software on a microcomputer-Lascd controller. The advantages in this approach 
include reduced hardware complexity, cost, increased design flexibility, common- 
ality and grown potential, as well as improved system performance. 

The discrete-time y2 regulator designs prcsrntcd in this paper represent 
the fixst of a series of microcomputer-based control concepts which will be 
subjected to extensive laboratory testing, followed by implementation and 
evaluation of the XM-97 Helicopter Turret System, discussed in [2]. One of 
the c'ccigns discussed includes a four-state observer fur estimating and 
tc~;re~sinq recoil torque disturbances. This design is sjmilar to 
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the UIIC prol)oscd in [2], but not implcmcnted, due to the limitations of the 
analog electronics used for the control law implementation. 

2. DESCRIPTION OF IABOF'ATORV TEST FIXTURE -__ -".-- - 

The inertia wheel test fixture used to evaluate the discwete-time regula- 
tor algorithms developed in this paper consist of two DC torque motors which 
drive the inertial wheel, an 800 Hz preamp, a demodulator, and a torque drive 
amplifier. The testing facility and a representative black diagram of the test 
fixture are shown in Figs. la and lb. Note that one torque motor, denoted by 
subscript 1, is used for regulation and tracking while the second troque motor 
(denoted by subscript 2) is used to generate torque input disturbances. A 
listing of the motor/inertia wheel parameters is given in Table 1. 

For practical xeasons we neglect the armature inductance in the motors' 
model. The open-loop state-space representation of the inertia wheel test 
fixture is then given by: 

I 

6 

. . e 

. 
where 0 and 0 represent motor shaft angular motion and velocity, f is coulomb 
friction (modeled as a constant bias disturbance), and T2 is an external torque 
disturbance. In our work, T2 simulates recoil disturbance, and we replace this 
torque notation with r(t). In general, recoil disturbance is modeled as a 
damped sinusoid. Because,of practical constraints, we simplify this model to 
a pure sinusoid with frequency w 

x' The equation representing the disturbance 
states is therefore, 

(Z-2) 

Note that only the position y=Kout is available for online measurement. 

3. CONTROL LAW SYNTHESIS 

3.1 Problem Formulation 

The problem is restated here in a. form amenable for the control law 
synthesis. ZYJIC are given the dynamic system represented in the state-space as 

. 
x1 - = Al51 + r52 + bl” (3-1.) 
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Figure lb. Two Torque Motor Diagram of Inertia Wheel. 
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where x represents the plant state, x2 
contmilsignal, and y the plant output. 

the torque disturbance state, ugev2 
The state variables are as fallows: 

where f = motor shaft angular displacement (gun pointing angle) 
0 = motor shaft angular velocity 
r = recoil torque disturbance 
; = recoil torque rate 
f = coulomb friction and any other torque bias disturbance, 

0 
The matrices Al, A2, and bl are as per Eqs. -_ 2-L and 2-2, and F = & 
c = [Kout 01 I J 

The simplified plant/disturbance configuration is shown in Fig. 

(3-2) 

0 

0 

0 -- lr 
J 1 " 

2. 

l- -% 
Figure 2. Plant/Torque Disturbance Configuration. 

Sever-al remarks are pertinent: 

1. The back emf gains ~b and K 
1 b2 

are combined into a single gain, 
VIZ., 

(3-3) 
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2. The linearized modt,l (F:y. 3-l) requires that the coulomb friction 
tea, f, be reprcscnterl as a simple torque bjas term, indepondcnt 
of 0. 

3. For aur de?;jyn, we consider the power amplifier gain Kin=12, and the 
resolver gain F&t=10 as a part of the physical plant. 

The design problem now is twofold: 

1. Given the plant output measurement, y(t)# obtain an estimate of 
the state z-1 and 52. 

2. Design a control Law that would reyulate the pointing angle, o(t), 
in face of any persisting torque disturbances. In other words, the 
control. law requirement is to null.-out 52 and to regulate the 
plant state 51. 

We consider first the controR law design. 

3.2 Control 

It is convenient to synthesize the contra1 law first, and then to proceed 
with the estimation scheme. The usual practice is to rewrite the system (Eq. 
3-1) with the augmented plant/distrubance dynamics state 

such that 

. 
x-Ax+bu - 

y = cx 
(3-5) 

where 

A= 

Upon substitution of the parameter values of Table 1, and with the "recoil" 
frequency of LO Hz (Wr = 62.83 rad/scc), one obtains 

A1 J & = [y c =: [Cl O] . (3-6) 
0 

0 1 0 0 0 
0 -0-2 28.85 0 --28.85 
0 0 0 0 1 
0 0. 0 -3948 0 
0 0 0 0 0 1 I &- -0 - 

3.18 
0 
0 
0 

- - 
n 

We obtain now the feedback control law, u = -K,_x, by a straightforward appLica- 
tion of optimal control theory. The optimal gains, K,, are derived by minimi- 
zing the cost functional 

I 

c = [LO 0 0 0 01 

(3-7) 
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wficic R-l and Q-diag[5-104 0 0 0 01. This choice yields the continuous- 
time gains 

% 
= [223.6 11.8 1.851 0.084 -9.071 (3-9) 

which yield the closed-loop pole locations for -B,i at -18 4 jl8. 

However, since our design requires a discrete-time control. law, we reformu- 
late our optimal control prohlem. This process is carried out in two steps, as 
indicated in the appendix. It yields the equivalent discrete-time system 

(3-10) 

and with a sampling interval AT = 0.01 set, 

9.990 10-j 1.395 10 
-3 4.712 

10-l 
1o-6 

9.980 2.696 10-l 1.395 1o-3 
0 8.090 10-l 9,355 1o-3 
0 -36.93 8.090 10-l 
0 0 0 

The equivalent discrete-time control law is then 

“k = -Kdx+ = -[ 182.8 10.72 1.563 0.0775 -9.071x+ (3-12) 

3.3 Estimation 

Implementation of the control law (Eq. 3-12) requires that an estimate be 
made of the state *. This estimate is rtliidc using a discrete-time, reduced- 
order observer, with the equations summarized in the appendix, this design pro- 
cedcre yields an observer state, zk, which evolves according to 

and the state estimate is given by 

(3-13) 

(3-14) 
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In this paper, we treat two basic cases: 

1. The IIrecoil" disturbance is not operative, and the only torque 
that disturb$s the gun is coulomb friction. The observer needs 
to estimate 9 and 5 only. 

2. $11 disturbances are operative; the observer estimates 8, r, 
r, and f. 

3.3.1 TN-State Observer - Since the recoil dynamics can be eliminated from ---^_“-._- 
the state Eq. 3-10, we obtain the second-order observer which estimates the 
angle-rate and friction terms: 

0.3711 -0-1978. 

3-d = 
0.6855 0*9011 

-2.590 

32 
[ 4.981 I 

I -0 0. 
$= I “0 1” 

1 
1 I 0.1 

32 
6.275 

-6.862 

0.0218 

'k + I 1 0.0109 
Yk 

'k 

(3-1.5) 

The design variables 3 and E (see appendix) were chosen as 

RE 1 , G - diag(O,LLOO) . (J-16) 

and the observer pol.es are at 0.64 + j25. The selection of "R and G-is not 
arbitrary. If we assume that the observer (Eq. 3-13) has a continuous-time 
equivalent, it would be desired to locate the poles of such an observer to 
the left of the (continuous-time) optimal controller closed-loop poles. The 
equivalent observer ,polcs are taken as the eigenvalucs of the matrix (lnAl)/AT,* 
and for the chosen "R and 0 they are -38 + j38. 

3.3.2 Four-State Observer - We design now a reduced--order observer which esti- _ -... --.-,---- ----""-_ 
mates all. four unmeasured states: it r, ?, and f. Three design cases are con- 
sidered; in subsection 3.4 we compare these designs by evaluating the closed- 
loop disturbance rejection properties. 
vary 6. 

In all. three designs we use R;=l and 
The equivalent continuous-time observer plas and the respective $ 

values are given in Table 2-t 

3.4 Closed-Loop Disturbance Rejection Properties 

Figure 3 shows the closed-loop configuration, where the torque T repre- 
sents any urrrnodeLcd disturbance which may excite the gun inertia. It is of 



I~I,I.I(,I- interest to evaluate t.hrB capability of the control ;~lgozithm to suppress 
:;uc:ii toruue disturbance at the gun output, G. Simul tir~~rwusly, one must ensure 
3J)prr)priate loop stability margins, It iS required, thc:rcfore, to examine the 
closed-1OOp frequency response. 

TABLE 2. EQUIVALEW OBSERVER POLES 

ime Equivalent) 
--_=--. 

-2Oij62, -324j39 

Q=diag(0,7,0,104) 
--I 

-0.9?j63, 
?=L,,"--~--- -z-_ 

r--- --- ---- --I_ 1 

;i. ' I 
I CONTROL - 

- 
GAINS 

OBSERVER -1 

I 

I 6' - f 

L COMPUTER 
-- --'-- ----c- -J 

Figure 3. Closed-Loop Configuration. 

One can represent the closed-loop by an n+(n-m)-th order state equation 
[3], viz., 

In order to facilitate the frequency analysis we transfcrm Eq. 3-17 into a 
continuous-time equivalent via a logarithmic transformation, as indicated in 
subsection 3.3.1. The unmodeled torque disturbance, T, is then appended, rc- 
suiting in the state equation 
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wllerc L" .= [O l/J -cl VIP trar~sfer function of interest is 

(3-19) 

where C = (1 0 0 0 0 0 ; 0' 1. -n-m 

Bode plots of IB(s)/T(s)l are shown in Figs. 4 through 7. Figure 4 shows 
the simple desian case for which the recoil disturbance is inopesative 
(subsection 3.3.1). TWO cases are presented: 

1. The friction estimate is fed-back, and the discrete control 
gains are 

Kd = [ls82.8 10.72 -9.071 I (3-20) 

2. The friction estimate is not used in the feedback loop, 
i.e., the ? gain (-9.07) is set to zero. 

Case 1 is characterized by a low frequency gain droop which demonstrates the 
closed-loop capability to cancel out low frequency (bias) disturbances. This 
is not the case, however, when the friction term is excised from the feedback 
path as shown in Fig. 4. 

Gain and phase margins are obtained by breaking the loop at u, and by 
computing the u-to-u open-loop transfer function. l?or case 1 the margins are 
(-,50°) and for case 2 (12 dB,45O). 

The EuZ1 recoil disturbance case is presented in Figs. 5 through 7. ShOWl 

are the three dcsiqn cases (I through III) as indicated in Table 2. Several 
comments are in order: 

1. The three designs Exhibit a notch at (or just about) the 
recoil frequency (10 Hz). 

2. The notches' depth and width vary considerably. Table 3 
lists the uncancelled poles and zeros of ~~Cs)/T(s)~ Eor 
all three cases; it is evident that the proximity of the 
complex zero pair to the disturbance poles (located on the 
imaginary axis) cTnnt_rols the notches depth, 

3. The stability pr0pcrt.i.e.s of the closed loop are discussed In 
detail in [4]; the gain and phase margins are (12 dB,40o) in 
case I, (11 dB, 5Oo) in II, and (10 dB, 600) in IIT. 

TABLE 3. 10 (s)/T(s) 1 UNCANCELIXD POLES AND ZEROS 
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Mlcroproct:ssor hardware/softvare development facilities used in implemen- 
ting and evaluating the discrete linear quadratic control algorithms discussed 
in this paper arc shown in Fig. 8. The host computer shown is an upgraded 8080- 
&sed MDS 220 development system with the memory expanded to 64K bytes RAM and 
1.25 megabytes disk. In addition, there is a high-speed line printer, an 8- 
channel 12-bit A/D, a 4-channel 12-bit D/A and a PROM programmer for 2708, 
2716, and 2732 PROMS (8, 36, and 32K bits per unit, respectively). Because 
the 8080 requiwes 1.2 milliseconds to perform a 32-bit floating point multiply, 
a means of speeding up computation was required in order to complete the con- 
trol algorithm computation within the required 0.01 second sample time. There- 
fore, a SBC 310 high-speed mathematics board was added which does the same 
multiply in 85 milliseconds. 1lowevcr , this board must cormnunicate with the 
CPU via the system bus in order to store and then load the required four byte 
data words. This process requires approximately 90 milliseconds. To minimize 
this excess overhead time, another SBC 310 high-speed mathematics board was 
added which permits one board to compute while the other is storing data. 

PRlNTER 

(6’iK MEMORY) 

Figure 8. Eardware/Software Facilities. 

A diagram of the inertia wheel. interfaced with the MDS 220 Microprocessor 
Development System is shown in F'ig. 9. The signal. generator is used to drive 
Motor No. 2, VThich in turn generates distutances to the wheel. The micro- 
computer system controls Motor NW. 1 which stabilizes the wheel. in the prc- 
stance of dist urbanccs induced by Motor No. 2. 
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!,rjc:h prfamp/powcr amp combination is capable of supplying a total of 
A'(; vvits comfortably at stall current. Tl~c demodulator is a standard analog 
design. The output of this device,has very low ripple; however, this repeti- 
tive noise is sufficient to present stability problems with some high bandwidth 
observer/controller designs. In order to minimize the effects of this measure- 
ment noise, a digital demodulation device was developed to replace the analog 
demodulator. A detailed discussion of this device will appear in a separate 
paper. 

r 

Figure 9. Inertia Wheel - Computer Interface. 

5. SOFTWiFE IFrPLEIWNTA'I'ION 

The microcomputer program which implements the discrete LQ regulator 
algorithms is partitioned into two parts, as shown in Fig. 10. The first 
section, written in FORTRAN, converts decimal numbers to the 32-bit floating 
point format required by the high-speed mathematics boards. The second part 
is written in assembly language and executes the algorithm for the controller 
and the observers. 

Originally, the basic design program (without the recoil disturbanCe) Was 
written in FORTRAN. However, the program required 54 milliseconds to com~~lct~c 
each iteration. Since the control law design requires that each interaction 
be completed withjn 10 mil.l,iseconds, recoding was necessary to speed up the 
computation. Tl1i.s was accomplished by recoding the algorithms in sequential 
ass,emhly language stat.cments, using macro definitions. This modification re- 
duced the program execution time from 54 milliseconds to 4.5 milliseconds. 

The iteration time for the recoil torque observer design was reduced in Similar 
fashion to 11.5 milliseconds. To further reduce the iteration time below 10 
milliseconds, error cheek routines were deleted resulting in an iteration time 
of 8 mill.isecnnds. Table 4 su:rlq;inrizcs the cxccutjon ti.mes associated with each 
im~lcmcntatjon. Furt.her reductions in execution time require the use of a 
f;l:;tr.,r micro such as tile 8086/8087. 
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TABLC 4. EXECUTION TIMES (FIJ';; 

Figure 1.0. Algorithm 
Flowchart. 
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Figure 11. Ihcro Definitions. 
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i I 1 I‘ : L:;!;cJrll.i1}~ idrlcpilyc WdE I,(.cdh(i f01- ,dlgorithm implementation, two USC1' 
IrlirC‘l'u!,, 1-7 I'L!l ;II.iti (XT aI1r3 01112 sutmaur c;, WIiT'j , LJCT~? dc fined. Figure 11 defines 
( ‘:ch JllilCI-0 C,!ld cqivc!s 1:)~: c>cpnndiny ~,cqucJlcc for each parameter. 

defines tl~f~ ir,djvidual terms 
FiyuXe 11 alSG 

comprising t11c macros. The flow charts fox each 
miicro are provided in Figs. 12, 13, and 14. It should bc noted that these 
macro routines are not called like a subroutine, but are "expanded." when the 
micros were coded, all required variations were included in the routine or 
"defined. " When the programmer references a defined macro, he types its name, 

followed by a list of I'arameters enabling selection of various parts of the 
routin? an3 modifyi nq the i.rltcrnal variables, 
for thst particular use. 

thereby customizing the macro 
This expanded version is then inserted into the main 

Iprogram, by the assembler, where its reference existed. This permits program- 
ming time to be minimized while maintaining maximum execution time hy utilizing 

sequential coding to eIiminate subroutine call times. 

When the PUT macro is exPanded, the I/O port address and memory base 
address are first obtained for the selected board. The WAIT submacro is then 
expanded. If required, four bytes of: data fox each address, Data 1 and Data 
2, are then stored in the board memory. Finally, if required, the type of opera- 
tion to be performed is then transferred to the board via the art. 

Khcn the GET macro is expanded, the I/O port address and memory base 
acidrass are first obtained fox the selected baard, The WAIT submacro is then 
expanded. Finally, if required, four bytes of data are loaded from the boards 
and stored at address TMP. 

When the WAIT submacro is expanded within either macro PUT OX GET, if a 
0, 1, 2, or 3 is dasignat,ed as the substitution for variable WTERR, execution 
is halted until the predesignated math board has completed its operation. If 
a 1 or 3 is designated, the CPU corrects for overflow (OF) or underflow (UF). 
Finally, if a 2 or 3 is designated, the error code is checked, and if other than 
an OF or UF error is found, the CPU prints the type and locati.on of the error 
(program pint counter) on the system console, then terminates eXeclAiOn. 

The first routine, FDATC, was kept totally in FORTRAN- The function of 
this program is to convert numbers in standard decimal format to 32-bit floating 
point format. The program flow is shown in Fig. 15 and operates as follows. 
This FORTRAN routine calls an assembly routine (in the maj.n program) which sets 
up a storage table for 32-bit (4-byte) words. Regaining control, FDATC then 
p;j:cses the starting address of each data word to another assembly subrOUtine 
fc,r stor'agc in the table. This ljrocedure is f!lcn repeated for storing the 
cc:'11 :;Cunts. 

Referring to Fig. 16, the input routine which controls the A/D converter 
iz called ADIN. ~incc the wheel is rnovcd only a ::;hor-t distance, the voltacje 
<jiffcrential to the A/D converter is small. To maximize resolution Of the 
A/D, a programmable preamplifier is keyed by the program. If t.1~2 programmer 
sets the SCLD flag to 0, the amplifier gain is 1, of the fl.ag is 1, a gain 
of 8 is programmed and then rcscaled back down in software to prcvcnt satura- 
tion of the A/D. If a larrje wheel displacement occurs, a third option i.s 
available; i.e., sCLD = 3, which causes the A/D to sample once with a gain of 
one, choose the correct Tjain and then 5mple as before. 
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1 I,( yl :;c.vcn ;~dditionrrl :;i4lnp] I::; .:r( tsi:cn quickly and ;~vcr;lcjcd. This ,lvcraging 
I.~,,~,ti~,~~ ta):cs about 1 _ 5 milJ.i:;r::i>rrC.:; and CVC!II though this CAUSTIC a :;light phase 
:;liifl , it was not yrtiilt c~llouc~lr tu c ffcct algorithm JKzrfor?ilaTK:C~. Howwer, since- 
rl,.l lloti.ceable irnprovcmcnt in systcn. ~CS~WISP WAS observed using the averaging 
XGUtine, it was deleted in the implsmcntation af the recoil case design. 

Finally, the last section of ADIN converts the 12-bit fixed-point input 
irom the A/D, to 32-bit floating point. A problem which arises in this process 
is that when a l6-bit fixed-point zero (00 00) is converted to a 32-bit 
floating point, the high-speed math board does the conversion but flags an 
error. Therefore, before each conversion, if the data is zero, a 32-bit zero 
is forced as the return data. 

To obtain the correct samFling rate (0.01 set) the entire computation 
cycle must be completed in less than 0.01 set followed by a delay routine. 
Figure 17 shows the two syztcms of delay routines used. The first, DLYS, 
counts down a 32-bit number to implement a software delay. DLY2, on the other 
hand, waits until the A/D is triggered forming a hardware delay. Both routines 
contain code to invert the polarity of a 5-volt square wave from a spare D/A 
channel for timing the full sampling sate; ri..e. I TIMI: = l/2 period (square wave). 

The three error routines are shown in Fig. 18. If the erxor is other than 
or or UF, HSMU prints out the type of error, where in the program the error 
occurred (pint counter) and the exi.ts to give control to the system monitor, 
terminating execution. Since the math boards have no extended precision tem- 
porary numljess, when an overflow occurs, the board computes the correct number, 
but subtracts BE16 from the exponent. To minimize this error, ERR3 sets the 
val.uc to maximum. 

ERR4 does the same but with an underflow error, since a BE16 was added to 
the exponent in this case. In addition, both ERR3 and and ERR4 output a narrow 
pulse to the square wave timer, a +lO volts for overflow and a -10 volts for 
underflow, to enable observat.ion of these two errors. 

In a continui.ng effort to minjtnize execution time, the program will even- 
tually be run on an 8086 microprocessor with an 8087 coprocessor for floating 
point computation. The 8086 runs off a 5-megahertz clock and has a six state- 
ment cue for increased speed with consecutive statement coding (600 ns fox 
minimum statement). With the 8087, a 32-bit floating Faint multipli.cation 
take5 only 18 microseconds, and since it operates as a coprocessor, the over- 
hr.nd is only 26 mioro:;ccnnds. Also, the 8087 performs double precision 64- 
bit comrmtattion and has an intermediate temprary storage register, 80 bits 
WidP, to eliminate the overflow and underflow problem. 

6. P~cl:I.,I:M1I\IARY TESTlNG RXSULTS 

AS indicated in :;uhsection 3.4, the t.ol-clue--to-pc)inting angle tra~l:-;fex 
function, 18 (s)/?(s) 1 I is of major intcrcst in evaluating tIlc dcrsign perfor-- 
mance. Expcrimcntally, it is convenient to obtain y(s)/ev2(s) (see Fig. 1) as 
it (approximately) scales with [t3 (s)/T(s) 1. (Eccausc of t?le back emf effect 
it will not scale cxactlly.) Figures 19 throuyh 22 show t.hc Bode plots of 
y (S)/PVL (5) fox l-he two- and four-state observer designs: 

1. * I?i gure 3.9 shows the c:i!;e in which t11e friction cstin;atc is 
fud b:3ck (two 5tat.e observer) * 
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Figure 17. Delay Routines. 
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Figure 18. Error Routines. 
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Figure 19. Testing Result, With Friction Feedback. 
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Figure 21. Testing Result, Recoil Case I, No Friction. 
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Figure 22. Testing Result, Recoil case 111, No Friction. 
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3. Ficjurcs 21 at~d 72 corrq:&d to the four-state observer 
design (cases 1 and 1x1 of subsection 3-3.2, respectively) 
with the friction estimate excluded from thc.control law 
(one can detect the notches at 10 Hz). 

It is evident that the disturbance rejection properties in these cases 
replicate the theoretical results (Fig. 4), my overlooking the Bode plots' 
imperfections due to the analyzer limitations, one can see that the friction 
fecd::ack term effects the desired low frequency (up to -5 Hz) gain droop. 
This property is well illustrated in Fig. 23. We excite the secondary motor 
with a sinusoidal signal at I, 5, and 10 Hz, and show the inertia wheel res- 
ponses in the two cases of the two-state observer, It is clear that the low 
frequency disturbance (1 Hz) is well suppressed when the friction term is fed 
back. It is also evident that the break frequency is somewhat above 5 Hz, as 
we still observer, at. this frequency, a bcttcr disturbance suppression perfor- 
mance in the friction feedback case. At 10 tiz both designs exhibit the same 

response which indicates that we are beyond the break frequency, 

Similar tests were performed on the four-state obsex-ver designs, but no 
pictures: comparable to Fig. 23 are available at this time. It was observed, 
however, that the 10 Hz di.sturbance is further suppressed by a factor of -2 
when the recoil estimate is used in the feedback loop (Cases 1 through III), 

7. CONCLUSIONS 

Jn this paper, two discrete-time control algorithms were obtained. They 
were designed to stabilize a microcomputer-based servo control. system (emula- 
tiny a helicopter turret system) located in the Stabilization Research Labora- 
tory facility at ARRADCOM. The algorithms include La-based digital control laws 
for precision stabilization in the presence of external torque disturbances, 
and reduced-order observers for disturbance and system state estimation. Roth 
algorithms were successfully implemented and tested at the ARRADCOM facility 
and it is shawn that the experimental results are in close agreement with the 
theoretical results, 
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AE'PENDIX 

1. DISCPJlTE-TIME CONTROL LAW FORf4ULATION 

The process of obtaining an equivalent discrete-time control law from the 
continuous-time system is carried out in twv steps [S]: 

1. The discrete-time representation of the cost functional 
(Eq. 3-8) is 

J(u,) = z sQ,x+ + 2$sd'$ 
k=O + UiRdUk 

subject to the discretized system 

where 

Q, = Q, (AT) = eAAT 

AT 
r = c(AT) = s Q(t)bdt - 

0 

AT 
Q, = Qd(A’r) = / @' (t)Q@(t)dt 

0 

AT 
s+ = s&AT) = / PL (t)QE(t,dt 

0 
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n!r 
Rd = Rd(AT) = 1 Ir' (t)Qr(t)+R)dt 

0 
(A-3) 

and AT = sampling interval, 

2. To facilitate computations, the optimal control problem 
(Eq. A-l and A-2) is reduced to an equivalent problem 

where 

subject to 

(A-4) 

(A-5) 

(A-6) 

Q 
-1 

eq = Q, -S+Rd F$ 

2. DISCRETE-TIME FtEDUCED-ORDER OBSERVERS ,-_- - 

Unlike the control law design, discrete-time reduced-order observers cannot 
be obtained by transforming the continuous-time into an equivalent discrete-time 
problem. It is required therefore, to carry out the observer design process 
from the discrete-time system (Eq. A-2) directly. 

The estimator dynamics are constructed to estimate the n-m unmeasured : 
states, where n is the system order, and m is the number of available measure- 
ment-s. We partition, therefore, the system (Eq. A-2) as 

I (A-7) 

where s,k E Rmxl, zp,k E R (n-m)xl and Cl is invertible, One may estimate these 
states by employing the reduced-order observer due to Gully [2], viz., 
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The observer state, z E R (n-m)xl 
-a , propagates according to the equation, 

+ T-"[r,-H(C2r,+C,rl)l~ 

(A-9) 

where 

(A-10) 

The selection of T and H completes the observer design. The transformation 
matrix T enables one to scale the observer gains, and should be chosen accor- 
dingly. The selection of the gain matrix H determines the observer dynamics 
(Eq. A-9) I and is therefore, more subtle. It can be shown /XI,161 that choosing 
H is equivalent to sol.ving an optimal control problem 

subject to 

(A-11) 

(A-12) 

The choice of 6 and R is not as straightforward as in the control law problem, 
since stxi.ctly speaking, the observex state does not usually have physical 
interpretation. These matrices should rather be chosen for desired observer 
pole locations and gain magnitude considerations. 

In summary, we conveniently rewrite the observer equations (A-8 through 
A-10) in a concise form, viz., 
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(A-13) 

where the coefficients Al, A2, and A3 can be identified from Eq. A-9, and 
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DATA ANALYSIS OF INTRUSION SIGNATURES FOR 
PHYSICAL SECURITY APPLICATIONS WITH A MINICOMPUTER 

WEN-WU SHEN 
COUNTER INTRUSION LABORATORY 

USA MERADCOM, FT. BELVOIR, VIRGINIA 22060 

February 19?1 

ABSTRACT 

A data acquisition and analysis system using a minicomputer is described. 

Effort of the system development, and its applications to signal processing 

and analysis is currently a part of a program on physical security research. 

The object of the research is directed toward development of target identification 

techniques to be implemented in digital signal processors (or intrusion detection 

sensors). The digital signal processor performs automatic decision-making in 

different environmental conditions as a distributed processing device for FIDS 

(Facilities Intrusion Detection SyHem). The FIDS is a central processor monitor- 

ing security of an area or complex to be protected. Data from various intrusion 

detection devices such as Radio Frequency Motion Sensors (RFMS), Vibration Sensors, 

Passive Ultrasonic Sensors (PUS), Ultrasonic Motion Sensors (UMS), Passive 

Infrared Motion Sensors (PIMS), etc. have been partially analyzed. To be discussed 

here in the presentation will include the test data from RF motion sensors and 

vibration sensors. 
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1.0 Introduction 

The Counter Intrusion Laboratory of Mobility Equipment Research and 

Development Command (MERADCOM) is currently engaged in the development of 

data acquisition and analysis equipment (DAAE). The DAAE will consist of 

the Data Acquisition Systems (DACS) and a Data Analysis System (DAN), The 

DACs will be microprocessor-based recording devices with software-control 

capability. The DACs will be used in the field to select, record, and store 

intrusion signals as well as non-intrusion false alarm stimuli data. The DAN 

is a Digital. Equipment Corporation PDPll minicomputer which will soon be 

upgraded. It has been used for data acquisition and analysis in the laboratory. 

The DAC which is being developed will consist of low-frequency, medium- 

frequency and high-frequency units. The DACs and the DAN will be operationally 

integrated to form an effective data acquisition and analysis system that will 

provide scientists and engineers with an efficient data-processing and computing 

tool for physical security RDT&E programs. 

2.0 Intrusion Detection Sensors 

The Counter Intrusion Laboratory has developed a number of sensors for the 

Facilities Intrusion Detection System (FIDS). The sensors included but were 

not limited to Balanced Magnetic Switch, Grid Wire Sensor, Duress Sensor, 

Contraband Sensor, Vibration Sensor, Passive Ultrasonic Sensor, Ultrasonic 

Motion Sensor, and Radio-Frequency Motion Sensor (or Microwave Motion Sensor), 

etc. Among those sensors, only the last four types of sensors required signal 

processing. Furthermore, the vibration sensor and the passive ultrasonic 

sensor are the passive devices, and their circuit designs were almost identical 

472 



except the difference in bandpass filter. However, a rejection filter (through 

a multiplier) can be optionally applied to the passive ultrasonic sensor to 

remove the energy emitted from an active device such as ultrasonic motion sensor 

if it is present. 

The RF motion sensor and the ultrasonic motion sensor developed by the 

MERADCOM are active devices. They apply the Doppler Principle to detect the 

motion of an intruder. However, those sensors were designed primarily for 

indoor implementation. The received signals were usually complicated by 

environmental multipaths and were generally very complex. 

3.0 Analytical Description of Intrusion Signatures 

However, numerical generation of the intrusion signatures can be performed 

through computer simulation or synthesis for some types of sensors. Brief 

mathematical description was given here for the active intrusion detection 

devices, particularly for the RF motion sensors. 

Let T(t) be the signal transmitted by an antenna or a transducer and the 

signal be represented as 

T(t)=A,cos(2~f0W,) (1) 

where f, is the carrier frequency, A, the amplitude, and $0 the phase. Let 

the information received by an antenna or a microphone be R(t). And then 

R(t) may be represented as 

R(t)=: A,cos[2~(f,+f,)t++,] (2) 
n=l 

where n=l, 2, ----co representing the multipath arrivals, An the amplitudes 

of the signals, f, the Doppler shifted frequencies due to a moving object, 

and +n the multipath phases of the signal received. 
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Let T(t) and R(t) pass through a multiplier (mixer) as they do in the 

RFMS and UMS circuits. Then, the output from the mixer can be represented as 

k 
S(t)=? 1 Ancos[2n(2f,ifn)t+m0++n]+A+I Ancos[+2nfnt++n-+,I (3) 

n=l n-l 

On the right-hand side of eq.(3), the first summation consists of the high- 

frequency information and the second summation is primarily the very low- 

frequency components which contain the intrusion information. We are only 

interested in the low-frequency information only. Therefore, applying a 

low-pass filter, we have 

S(t)=!? C A 
2 n=l" 

COS[+2~fnt+@ne9,1 (4) 

This is the information that is manageable by a digital computer. 

Equation (4) serves as a fundamental description of the intrusion signatures 

for a number of sensors developed by the Counter Intrusion Laboratory. It 

Testing and evaluation of intrusion detection sensors have been conducted 

in the past. Two computer systems were used for the data acquisition and 

lysis: One was the real-time data acquisition system which was used in the 

Id for digital recording; the other was used mainly for data analysis in 

ana 

fie 

the 

the 

laboratory. Figure 1 shows the block diagram for data analysis system in 

laboratory. The central processor was a DEC PDP11/05 minicomputer. The 

may be integrated for the very much simplified cases. However, computer 

simulations can be performed to synthesize the signatures by using the equation. 

And the computer simulations of intrusion signals are useful for understanding 

the various signal characteristics and for extracting the features of the 

simulated data as well as the observed signatures. 

4.0 Data Analysis For Intrusion Detection Sensors 
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peripherals included a RKO?; disk, three magnetic tape drives, data storage and 

display, a hard-copy unit, and above all a LPSll device. The LPSIl is an 

Analog-To-Digital Converter by which we analyzed the data from the analog 

tapes. The scope is for a quick view of analog signals. 

Data which had been analyzed recently included the signatures from the 

passive ultrasonic sensors, ultrasonic motion sensors, RF motion sensors and 

vibration sensors. However, we would limit our discussion to the results from 

RF motion sensors and vibration sensors only. 

4.1 RF Intrusion Signals 

Testing of the RFMS was conducted in Bldg. 2093, Ft. Belvoir, VA. Figure 

2 shows the configuration of the test building. Two RFMS transmitting antennas 

were mounted in one end of the building. In the other end near the office 

area were mounted two RFMS receiving antennas. The signals recorded were the 

sum of two receiving antennas. 

Figure 3 shows the background data without stimuli. The RFMS uses a 

carrier frequency at 915 MHz. The data shown here has a sampling rate at 

40Hz where the carrier frequency has been removed (i.e.eq. (4)). Trace A was 

the data which was taken when heating system was in the warm-up phase. And 

Trace I3 was recorded about 10 minutes after the Trace A. At that time, the 

door was rattling in the wind. The last trace of the time-series data was 

recorded in the general background in the winter where the heating air flow 

was there in the duct. The air flow caused vibration in the duct and the 

high-frequency components of the data was probably the phase fluctuations due 

to the RF reflection on the duct. 

476 



OFFICE AREA 

Steel Safe co / 
Door 

I 

$1 

"I 
f-v -- 

-f 
Path 7A_, 

1 

/ 

/ Path 78 , 
-7-- / / cl SHELVES 

/ 

I 
1 

I 

I 1 
Steel Door 

1, 
4-- PATH 7C 

-- - -- 

ENTRANCE DOOR 

RFMS Receiving 
Antenna 

RFMS Transmitting 
Antenna 

Figure 2. Configuration of Test Building 
(40' x 50') 
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Figure 3. Background Data Without Stimuli 
A. Heating System In Warm-up Condition 
B. Door Rattling In The Wind 
c. Heating Air Flow In The Duct 
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Figure 4 shows the time-and frequency-domain data in which one was shaking 

the steel door from outside. The purpose of the test was to simulate the 

windy conditions. The spectral lines here indicated the vibration characteristics 

of the steel door. Those lines would be shifted to the lower-frequency range 

and disappeared as time went by when one stopped the shaking. 

A test was conducted by opening and closing the entrance door for a number 

of times. Figure 5 shows the time-series data for the test. The first trace 

illustrated the situation where one opened and closed the door normally and 

continuously for five times. Trace B of the data showed the testing where 

one opened and slammed shut the same door for five times. Because the door was 

operi outside, the contribution to the time-domain features was mostly from the 

situations where the door had its surface closely parallel to the surface of 

the wall. 

A number of walking or running tests were conducted where a man walked 

or ran in various paths. The dashed lines in Figure 2 indicated the paths 

for the walking/running tests in discussion. Figure 6 shows the time-domain 

data by the man walking or running in the Path 6. The first trace of the figure 

was the time-domain data where the man walked from the entrance door to the 

office area following the dashed-line path. Trace B was the signatures where 

the man walked in the opposite direction of Trace A. If the man walked exactly 

in the same path in the opposite direction with the same speed, we might expect 

that Trace B was the time reversal of Trace A. In any case, Trace C was the 

data taken when the man was running in the same path to-and-fro twice. 
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Figure 5. Data By Opening And Closing The Front-Entrance Door. 
(A) Normally And Continuously Five Times 
(B) Opening And Slamming The Door Five Times 
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Figure 6. Data By Man Walking Or Running (Path 6 in Figure 2) 
A. Walking From Entrance Door To The Office Area 
B. Walking From The Office Area To The Entrance Door 
C. Running From The Entrance Door To The Office Area; 

Then Back And Forth 
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The following figure (Figure 7) shows the situations where the man was 

walking from right to left and back twice in the building following the dashed 

line path 7A, 7B, and 7C shown in Figure 2. The complex time-domain features 

of the data suggested the extensive environmental reverberation, multipaths, 

and the Doppler spread of frequencies, Another factor which caused the 

complexity of time-domain feature was the fact that there were two emitters 

and two receivers used in the test. 

The complete set of the data acquired in the RFMS test was compiled 

and presented in the Appendix. In the appendix, the time-domain data as well 

as its Fourier amplitude spectrum were illustrated. Discussions of the data 

analysis on RF sensors so far are 'limited to the signal processing with 

emphasis on data acquisition and display. Mathematical computations for 

parametrizations or for feature extractions have not been attempted yet. 

However, the time-domain features seem meaningful. To a certain extent, they 

can be understood and make sense visually. 

4.2 Impact Response Analysis For The Naval Steel Lattice Vibration Sensor System 

In 1978, the BDM Corporation under a contract with MERADCOM conducted a 

data acquisition effort for the steel lattice vibration sensor system at the 

Naval Weapons Station in Yorktown, Virginia. One of the objectives for the 

test was to collect the vibration sensor system response and the performance 

information for analysis. 'Two of the naval ammunition magazines were used for 

the test. The magazines were earth-covered arch-type structures of traditional 

design and were made entirely of reinforced concrete. 

Figure 8 shows the diagram of the steel lattice network and the sensor 

configuration. The lattice network was typical there in the naval installation. 
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Figure 7. Data By Man Walking (Paths 7A, 7B, 7C In Figure 2) 
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Figure 8. J-SIIDS Vibration Sensor Configuration 
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The bunker was covered with earth at the ground level. Five detectors of the 

J-SIIDS (Joint-Services Interior Intrusion Detection System) vibration sensors 

were mounted on the central longitudinal bar as the signal receivers which were 

shown in the figure. In the upper corner on the left was the confiquration of 

detectors which showed that the outputs from the detectors were connected into 

two separate processors. Analog data was taken at the input to the processor 

and at the bandpass filter output in the processor. Therefore, four-channels 

of data were recorded in the analog tape in which two (ch. 7 and 6) were wide- 

band input and the other two (ch. 4 and 5) were noted as processed channels. 

Figure 9 shows the block diagram of signal processing for the test data from 

the vibration sensors. The analog data was digitized and stored on the magnetic 

tapes. In order to acquire the digital data with the required 40KHz sampling 

rate for analysis, the Ampex recorder was played back with a factor of $ of the 

recording speed. With the sampling rate, a substantial amount of data was written 

on the tapes. To find the signals, we screened the raw digital tapes with an 

envelope detector and printed the locations of the signals. On the basis of 

printer output, we displayed the signal data and the noise data as well on the 

CRT. The desired data was written on the output tape for later analysis. 

Figure 10 shows a display of the data from a thumper signal and its Fourier 

amplitude spectrum. The signal was generated by applying a thumper on the 

concrete surface inside the bunker. The upper trace is the time-domain data 

and the lower part is its frequency-domain spectrum. 

The object of the present analysis on the vibration sensor data from the 

Yorktown test was to find the optimum detection bandwidth for the impact 

response data from the bunkers. The other purpose was to verify the J-STIDS 

vibration sensor's bandpass characteristic. In the lower part of Figure 9 on 
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the left, the diagram shows that the input data xi passes through a convolution 

filter Hi and yields the output Yi. Then, the purpose of the present work was 

to find Hi so as to maximize the signal-to-noise ratio for the output Y,. In 

order to accomplish the purpose, we stacked the signal spectra and the noise 

spectra separately from the data ensemble which have been edited on the tape. 

Finally, we computed the filter /Ii in the frequency domain. 

The vibration sensor test resulted in a large volume of analog data where a 

number of stimuli was used in the test. However, presented here are limited 

to the results of two stimuli, namely thumper and rotohammer. Furthermore, all 

four channels ot the recorded data were processed for impact response analysis 

and for verification of bandpass filter characteristics, Partial accomplishment 

of the anal.ysis had been presented in a technical report in September 1980 and 

the remaining part will soon be presented in a separate report. In the current 

presentation, only results from Channels 7 and 4 (i. e., processor #2 input and 

output) will be discussed. 

4.2.1 Thumper: 

Figure 11 shows the average power spectrum from the edited noise records. 

The noise spectrum indicated the A.C. power-source contamination in the data. 

Figure 12 shows the average signal amplitude spectrum from the thumper on the 

concrete surface. It showed two significant passbands of energy: one was in 

the range below 6 KHz and the other was in the lo-15 KHz bandwidth. The low- 

frequency band was in the normal audible range and the higher-frequency band 

was used for detection purpose so that false alarms can be reduced or eliminated. 

For the optimum computation, Figure 13 shows the frequency domain response of 

the filter which maximized the signal-to-noise ratio for the detection circuit. 

There was a g-point smoothing similar to the Hamminq Window applied to the 
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reL[JClnSc curve. The 6-dl3 response of the optimum detection bandwidth in the 

higher frequency range was about from 10 KHz to 15 KHz. Figure 14 shows the 

same analysis for the Channel-4 data. 

4.2.2. Roto Hammer 

The same analysis was done and presented for the sianals using the roto 

hammer as stimulus. Fiqure 15 presents the average frequency-domain amplitude 

spectrum for the noise records taken during the roto hammer test. The noise 

samples might include the data while the rotohammer was running in the air. 

The rotohammer ran continuously for a period of time at eack test point during 

the test. Figure 16 shows the average Fourier amplitude spectrum for the 

rotohammer signals. There are two apparent important bands of energy in the 

spectrum: one at the low frequency range below 4 KHz and the other at the 

8-12 KHz passband. (Note: For this part of the data, the digitization was done 

after the Ampex recorder was being used in the field for some time. As compared 

with Figure 13, we thought that the speed of the recorder might not be very 

accurate and it might be slowed down somewhat while the data was beina digitized). 

For the results of optimum detection analysis, Figure 17 shows the response 

curve in the frequency domain for the processor 2 input (channel 7, wideband). 

There was no smoothing applied to the response curve. Figure 18 shows tRe response 

curve where smoothing has been done. Figure 19 shows the computation for the 

processed channel (ch. 4). Compared with Figure 14, the response band was 

shifted to the lower frequency range, possibly due to the cause of the Ampex 

recorder as noted earlier. 

5.0 Summary and Discussion 

5.1 Summary 

The current data acquisition and analysis system for the physical security 

RDTt,F has been briefly presented. The intrusion signatures from RF motion sensors 
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and vibration sensors have been discussed. The time-domain RF sensor data 

appeared to be comprehensible. In addition to envelooe detection of intrusions, 

detections by applying the time-domain features seem feasib,le and can be 

attempted. Parametrizations using the frenuencv-domain amplitudes may also be 

an important area for feature extractions. 

The impact response data from concrete surface suggested two important 

frequency bands of energy concentration: one was in the low frequency range 

below 6 KHz and the other in the 10 KHz - 15 KHz range. The former passband 

is in the normal audible ranoe and is not suitable for application in detecting 

the forced intrusion. However, the latter passband is useful for detectino the 

forced intrusion in the structure of the earth-covered concrete where the 

false alarms can be reduced to a minimum. 

5.2 Discussion 

The present DEC PDP 11/05 minicomputer is about adequate for data acquisition 

and display with some computing capability. The difficulty in performing 

extensive computing using .the current system lies in the fact that its memory 

capacity is only 8K words. However, the system will soon be upgraded, a 

medium range PDP 11 system with additional peripherals. We expect that the 

computing and data-handling capabilities of the data analysis system will be 

enhanced significantly. 

The time-domain features from the RF motion sensor is comprehensible for 

some cases. Time-domain feature study can be done by simolifying the transmitter 

and receiver components for better understanding and qradually by increasino 

the elements of transmitters and/or receivers to the configuration for the 

practical applications such as those shown in the test. 
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Data from vibration sensor test in Yorktown, Virginia was very voluminous. 

Various types of data in different conditions were taken and the data qualities 

were also varied from one case to the other. The processed channel which was 

designed for detection in the vibration sensor was in agreement with the impact 

response data from the earth-covered concrete. 

APPENDIX 

This appendix compiled the data for the RF motion sensor test at Building 2093. 

A total of 21 tests was conducted. Presented here are the displays of the timc- 

domain amplitudes (1024 points)and the frequency-domain spectra and the frequency- 

domain spectra. The right-most number in the second line was the maximum count of 

the time-domain amplitudes, For example, in Figure A-l, the maximum amplitude was 

249, which was relatively lower as compared with those of the walking tests, say 

1027 in Figure A-10. 
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NUMERICAL SOLUTION TO BEAM VIBRATTONS UNDER A MOVING COUPLE 

Julian J. Wu 
U.S. Army Armament Research and Development Command 

Large Caliber Weapon Systems Laboratory 
Benet Weapons Laboratory 

Watervliet, NY 12189 

ABSTRACT. The finite element solution formulation in time- and 
space-coordinates is extended to beam vibrations effected by a moving couple. 
This problem has direct application to gun motions analysis with an unbalanced 
moving projectile. The moving load, instead of being a time-dependent Dirac 
delta function as for the case of a moving concentered force, is now the 
derivative of this Dirac delta function. This singular function does not 
present any difficulty due to the variational process employed. This solution 
procedure is described together with results of beam motions subjected to a 
couple moving with various speeds. 

1. INTRODUCTION. In a previous report [l], this miter presented a 
finite element-variarional formulation which discretizes the spatial and time 
variable in the same manner, The method was applied to a problem of beam 
motion subjected to moving concentrated forces. Results were shown to be in 

excellent agreement with known solutions. this same formulation is now applied 
to the problem of a couple, i.e., a concentrated bending moment. 

A recent investigation by S. H. Chu [2] on the interacting forces between 
a projectile and the cannon tube indicates that the couple produced by the 
eccentricity of the projectile as it moves down the tube may be of such a 
magnitude that its effect on the tube motion becomes significant. It is then 
important that the problem associated with moving moments can be analyzed 
adequately. The purpose of this note is to present the modification necessary 
to the previous formulations so that the solutions of a beam motion problem 
under a moving bending moment can be obtained routinely, Results of a 
cantilevered beam subject to such a load are also presented. 

2. DIFFERENTIAL EQUATION AND ~IONDIMENSIONALIZATION. Consider a 
Euler-Bernoulli beam subjected to a moving couple bl. The equation 
differential can be written as 

. . 
EIy"" f PAY = -Mb'(x-x) (1) 

where y(x,t) denotes the beam deflection as a function of spatial coordinete x 
and time t. E, I, A, p denote elastic modulus, second moment of inertia area 
and material density respectively. A dirac function is denoted by 6, x - x(t) 
is the location of M, a prime (I) denotes differentiation with respect to x 
and a dot (*), differentiation with respect to t. Note that the riffht hand 
side of Eq. (1) h as a dimension of force due to the fact that b'(x-R) - d/dx 
6(x-x> has a dimension of (length)". 
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Introducing nondimensional quantities 

* CL c (2) 
Y - Y/k , x-x/a, t - t/T , 

where a is the length of the beam and T Is a f lnite time, within 0 < t C T, 
the problem is of interest, Eq. (1) can be written a8 

. . 

Y “- + y2y - - Q&‘(x-x) (3) 

The hats (*) have been omitted in Eq. (3) and 
c 

r=- 
T 

with 

MR 
Q I -- (4) 

EI 

.2 I :ApI 
EI 

Boundary conditions associated with Eqs. (1) or (2) will now be introduced In 
conjunction of a variational problem. Consider 

61 - 0 (Sal 

with 

l * -  -  - y2yy* f QS(x-x)y*]dxdt 

+ ,:, dt{kly(W)y*(O,t) + k2y’(O,t)y*‘(O,t) 

+ %y(i, t)y*Cl, t) + k4y’ (l,r>y*’ (l,t)) 

+ y2j; dx{k+(x,O) - Y(x)ly*b~l)} (5b) 

where y*(x,t) is the adjoint variable of y(x,t>. If one takes the first 
variation of I considering y(x,t) to be fixed: 
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and consider &p to be completely arbitrary, it le easy to see thet Eqs. (5) 
are equivalent to the dlfferentlal Eq. (3) and the following boundary and 
initial conditions. 

Y”‘(O,t) f kly(O,t) - 0. 

Y"(0, t) - k2y'(O,t) - 0 
.- octc1 (6a) 

Y”‘(l,t) - kv(l,t) - o 

and 

Y”(l,t) f k/+y’(l,t) = 0 

;(x.o) = 0 

;(x,l) 
O<x<l (6b) 

- kjjMx,o) - Y(X)] - o 

Taking appropriate value6 for kl, k2, k3, and kq, problems with a wide range 
of boundary condition6 can be realized. The initial conditions in Eqs. (6b) 
are that the beam ha6 zero initial velocity, and, If one take6 kg to be 0~ (or 
larger number compared with unity), 

Y(X,O) pI Y(x) 

The meaning for case6 where kg is not 80 need not be our concern here. 

To derive the finite element matrix equations, one begins with Eq. (5a’) 
and write 

(61)&y=o ” 0 

+ j; dt[klY<O,t)W(O,t) + k2y’(0,t)byk’(0,t) 

-t k3y(l,t)&y*(l,t) + kqy’(l,t)6~‘(l,t)l 

+ y2j; dx{lk, I y(x,O) - Y(x)16y*(x,1)1 (7b) 
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Introducing element local variables 

(i> 
5 -5 = Kx-i+l 

(1) 
n=rl = Lt-j+l 

(8a) 

or 

X= 1 ts-ti-1) 
K 

1 t=- L (E+j-1) 

(8b) 

where K is the number of divisions in x and L, in t. (A typical grid scheme 
is shown in Figure 1). Equation (7b) can now be written as 

, E ,  ,L, , ;  g 

2 
Y"(~j)GY*"(ij) - '-' K Y(ij)bY*(ij>ld~d~ 

kl K2 
I 
~- y(ij~(o,.,)6y*(ij)(o,n~ + k2 ;- Yt(ij)(o~n)sy*‘(ij)(o~n’ 

+ ,i 1; 9’ ty2k5~Y(ij)~~~~)~Y*(~j)~s,1))1 

LQll- = - ,I, ,& ; i, lo sl(x-;)ay*(ij)(~,~)d~d~ 

F y2k5 1 
+ z --*- I, dS [Y(i>(~>Sy*(iL>(S,1>1 

i=l K 

The shape function vector is now introduced. Let 

Y*(ij)(M) _ 1 a*(S,O)y*(ij) = _ Y*T(~j)a(E,n> N 

(9) 
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Equation (9) then becomes 

K3 Y2L 

ii- ! - -i- - _ Bj y(ij) 

k2K2 
+ -t- Jb) JJ(ij) _ 

kqK2 
+ -;-A WI U_(ij) 

r2kg 
-;-- G(i) (11) 

where, as it can be seen easily, that 

1 1 

B3 = ,', a(l,ri)aT(l,n)dn * N d 
B4 z ,', ~,~(l,~)~T,~(l.n)dn 

f5 = 1' a(~,l)aT(CSo)d~ 
o- - 

527 



where 
d- - 

&j)(G) = ;; qij)(E-S) 

is the local version of the function 6(x-x) appeared in Eq. (9). The specific 
form of &(y)(<-5) will be described later in a paragraph prior to Eqs. (18). 

Now Eq. (11) can be assembled in a global matrix equation 

gy*T K  y = & Y *  F 
(13) 

‘. -* -  .v 

By virtue of the fact that 6Y* is not subjected to any constrained conditions, 
one has 

which can be solved routinely. Numerical results of several problems in this 
class will be presented in a later section. 

3. FORCE VECTOR DUE TO A MOVING COUPLE. We shall describe here the 
procedures involved to arrive at the force vector contributed by a moving 
couple. This force vector has appeared in Eq. (12) as 

Perform integration-by-parts once. Equation (15a) can be written as 

(Isa) 

(15b) 

The shape function _a(S,n) is a vector of 16 in dimension. In the present for- 
mulation we have chosen the form: 

k = 1,2,3,...16 
i,j = 1,2,3,4 

(16a) 

and 
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The relations between k and i,j are given in Table I. These are the conse- 
quences of the choice of the shape function such that Y(ij), the generalized 
coordinates of the (ij)th element, represent the displacement, slope, veloc- 
ity, and angular velocity at the local nodal points. Thus 

4 
b#l = 1 

p-1 4 
; ii'(E) = 1 b' ipt 

p-1 
(17) 

p=l p=l 

The values of hip are given in Tables II and III. 

TABLE I. RELATIONSHIP BETWEEN (i,j) AND k IN EQUATION (16) 

I I I 
I k 1 E 
I I (isj) I k I ’ ‘I 

I---- 
I 

1 I 
(lpl) I g I 

(1,3) I 

I 
I 

2 I 
(2*1) / lo I 

(2,3) 

I 
/ 

3 I 
(ls2) I l1 

I (1,4). I 

I 4 
I 

(2,2) I 12 1 (2,4) I 
I I 
I.,5 1 

(3*1) I l3 
I (3,3) 
I I 

I 
6 1 

(4s1) I l4 I 
(4,3) 

I 

I 
7 I 

(3s2) I l5 
(3,4) I 

I 
I 8 
I / (4p2) i l6 

I (4,4) 
I I 
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TABLE 11. VALUES OF hip IN EQUATION (17) 

I I I I I I 
I i pI 11213 I 4 I I 
I I I I L-1 

I 

I v 
/ 

lI O I -3 I l ’ I 
2 1 01 1 l-2 / l ’ 

I 31010/3 l-2 I 
I I 

I 4 I OI O I-’ 
I 1 I 
I I 

TABLE III. VALUES OF b'ip IN EQUATION (17) 

I I I r 
3 I 4 I 

I I 11 O/-6 / 6 I 0 I 

21 11-4 
I I I 

I3 /oj 

6 / -6 IO 1 
I I 

41 01-213 I 0 I 
I I I I I I 
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Now, let us consider s(,*)(s-c). This "function" represents the effect 
of the Di .rac delta function 6 i x-Z) on the (ij)th elemenz, If the curve of 
tr.avel G = x(t) does not go through the element (i,j), S(ij)("-S> = 0. If it 
passes through that element, one has 

&,tG-;, = :(x-x> = KG(C.-E) (18a) 

with 

s = S(n) - d (lab) 
The function S(n) is derived from x = x(t). For example, if the force moves 
with a constant velocity, one has 

e - 
x = x(t) = vt (19a) 

it follows from Eqs. (8) that 

r = F(Tl> = -ii-l + zE (n+j-1) 

With Eqs. (16), (17), (18), and (19), one writes (15) 3s 

F(ij)k = KI; ,:, akr%n)%;)d~dn 

Equation (20) can then be. gvaluated easily once the exact form of 5 is 
written. For example, if 5 = n, Eq. (20) reduces to 

F(ij)k = 1 4 i 1 m-2 
k blip biq I, E dS 

p=l q=l 
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TABLE IV. DEFLECTION y(x,t)/k OF A CANTILEVERED BEAM UNDER A 

MOVING CONCENTRATED MOMENT (T = lOlo sec.) 

I I I I I I 
i x/a i I I i 
I t/T I 0 I' 0.25 I 0.50 I 0.75 I 1.00 
I I I I I I 
I 
i 0. / 0. i 0, I 0. I 0. 0. 

I I 

[ 

0.25 
I 

O= 

I 
I 

.03125 I I .09375 I I 0.15625 1 0.21875 
I I I 

0.50 I 0. I ,03125 1 .12500 1 0.25000 1 0.37500 

I 
I I I I I 

0.75 i O= I .03125 1 .12500 1 0.28125 1 0.46875 
I I I 

1.00 I 0. I .03125 1 .12500 1 0.28125 t 0.50000 
i I I I I i 

TABLE V. DEFLAECTION y'(x,t)/R OF A CANTILEVERED BEAM UNDER A 

MOVING CONCENTRATED MOMENT ('I: = lOlo sec.) 

I I I I I I l- 
I x/g I I I I I I 
I t’T / 0 I 0.25 I 0.50 I om75, / 1.00 I 

I I I I 
I I 

I 0. I 0.0000 0.0000 0.0000 0.0000 0.0000 I 
I I 

1 / 1 1 
I 

I o=25 1 I (0.0072) 1 0.2366 j 0.2481 1 0.2496 j 0.2500 1 

I Og50 j (0.0021) 1 0.2481 I 1 0.4856 I 1 0.4981 ; 0.5000 1 

I Ogr5 I 0*0°05 ; 0.2496 j 0.4981 / 0.7366 / 0.7500 ; 

I 1.00 I 0.0000 j 0.2505 ; 0.5021 1 0.7572 
I I 

; 1.0000 1 
I 
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4. NUMERICAL DEMONSTRATIONS. Some numerical results obtained will now 
be presented. Let us consider a cantilevered beam subjected to a unit moving 
couple with a constant velocity 

R 
v=- 

T 

As T varies from m to 0, the velocity varies from 0 to m. 

characteristic 
the first mode 

It will be helpful to compare v with some reference velocity which is a 
of the given beam. It is known that for a cantilevered beam, 
of vibration has a frequency (see, for example, 131) 

f 
w 

1 
0 em ze -- E5’] = _“:‘“Y 

2rr 2n c 
(cycles per seconds) 

C 

and the period, 

Tl = 1.786 c 

where 
4 

,2 = !!!L 
EI 

Consider the vibration as standing waves. They travel at a speed 

1.12R 
v1 = 2Rfl = ----- 

C 

Hence, the relative velocity 
V Tl C v z -- = fl f 0.893 - 
vl 2T T 

We shall take c = 1.0 for the moving force problems. Thus, fl = 0.560 Hz. 
T 1 = 1.786 sec. and 

v = 0.893/T 
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Using grid schemes of 4x4 (i.e., four segments in spatial and four in 
time coordinates) and 8x4. Tables IV through VIII show the beam deflections 
(and slopes) as the concentrated moment Q = 1.0 moves from the left to the 
right end. Since we have defined T as the time required for the load to 
travel from one end to another, t = 0.5T, for example, indicates the point in 
time when the'load is at the midspan of the beam, 

In Tables IV and V, T is set to 1O1' sec. which is extremely large 
compared with the beam characteristic time of TI = 1,786 sec. The solution 
should reduce to the static problem. This is certainly the case as shown in 
these two tables. These results are obtained using a grid scheme of 4x4. 

For results shown in Tables VI through VIII an 8x4 grid scheme has been 
used. The beam deflections for T = 10, 1.0, and 0.1 seconds are shown in 
Table VI, VII, and VIII respectively. 

Finally, these deflection curves are also plotted in Figures 2 through 
10. From these figures and the tabulated results, one observes that while 
so-me of the results are extremely good, others are changing so rapidly with 
respect to time or space variable that an assessment on their accuracy is very 
difficult. Hence, further investigations on numerical convergence of these 
data is necessary. 
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ANALYTICAL SOLUTIONS IN NUMERICAL ANALYSIS 

J L Harris 
US Army Missile Command 

US Army Missile Laboratory 
Redstone Arsenal, Alabama 35898 

ABSTRACT. This paper will deal with the useage of exact solutions to 
differential equations as a means to decrease the computational burden associated 
with guided missile flight simulation. In this type of simulation, the governing 
differential equations are typically solved for the highest order derivitive, 
then numerically solved by forward integration over time, using some appropriate 
integration method and a time increment which must be chosen sufficiently 
small for representation of the various system responses. Many of the system 
responses can be represented by linear differential equations, the solutions to 
which are well known. By computing the exact solution to the equation, the 
time increment ( dt) can be chosen as large as the dynamics of the inputs 
to the response function will allow, rather than being governed by the 
dynamics of the response function itself. 

In general this will result in a computer time reduction, although there 
may be instances where this is not true. An example will be presented. 

1. INTRODUCTION. The stimulation to write this paper has grown out of 
several years of guided missile flight simulation on the part of the author, 
Most of this simulation was done digitally. The typical problem involves 
the generation of a missile trajectory as it flies toward its target, which 
in general is also moving. Fig. 1 illustrates this. This simulation has 
been undertaken to determine miss distance relative to the target (aim point), 
probability of -target kill, maximum intercept range, altitude, and other 
perf#ormance limitinqconditions, such as missile control system requirements. 

2. SIMULATION APPROACH. The general approach to digital simulation of 
guided missile motion is to arrange the various differential equations which 
govern the instantaneous motion into expressions which define the highest 
derivative for each variable which must be represented. These equations may 
be partial differential equations, and they may be non linear with non 
constant coefficients. They are then numerically integrated by one of the many 
numerical integration schemes available. The intent of this paper is not to 
treat numerical integration schemes, rather it is to suggest that occassionally 
there are differential equations embedded in the representation which.= be 
solved analytically and to propose that these be solved analytically instead 
of numerically. Table 1 presents the six equations for missile motion. These 
are always present. Control equations, etc., vary from missile to missile. 

3. A SIMPLIFIED EXAMPLE. Figure 2 shows a basic block diagram for a 
simulation representation. The situation is driven by the difference in 
target and missile position , expressed in inertial space, taking round earth 
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considerations into account if range/altitude are sufficiently large. The 
difference in target and missile positions are used to calculate the orientation 
in inertial space of a line connecting the missile and target. Missile 
orientation is referenced to inertial space, and the seeker may be referenced to 
missile orientation or to inertial space, in either case the seeker pointing 
error is the difference between the seeker centerline and the line of sight 
angles. The seeker error is used to drive the seeker in a direction to reduce 
the error, and to command the missile to maneuver as needed to produce target 
intercept. This command produces a control deflection of some form (fin 
deflection, thrust deflection, etc.). The airframe responds to this, and 
accelerations are produced, which are integrated to update missile velocity 
and position, thus closing the loop. 

4. A DETAILED EXAMPLE. The seeker functional representation from Figure 2 
is shown with an additional level of detail added in Figure 3. It is assumed 
that the error is multiplied by a constant, K, then input to the seeker drive 
as a rate command, 8 It is assumed that the seeker's response to this 
command can be repre eAted by a first order differential equation (first order t 
response with time COnStant T). This is still a considerable simplification 
of course. The commanded rate will be constant throughout the interval 
between data samples. The seeker rate and position are uniquely defined by the 
solution of the differential equation and insertion of the appropriate time 
as shown in Figure 3. Obviously the time of interest is the time of taking a 
new data sample. This solution, shown in Figure 3, involves an exponential 
which is typically time consuming to evaluate, but for a constant sampling 
interval and a constant time constant it needs to be evaluated only once, at 
problem initiation, Figure 3 also shows the numerical burden of calculating this 
response numerically with a very simple algorithm. It can be seen by inspection 
that the numerical burden is exactly equal for the two solutions, per step. 
But to achieve acceptable accuracy it would typically be required to break the 
sampling interval into sub-intervals for the case of numerical integration, 
even ,if a sophisticated integration algorithm were used. The number of 
subintervals would depend on the ratio of the sampling interval to the time 
constant. 

For the analytical, i.e., exact,solution there is no error, obviously. 

5. ON APPLICATION. Most of the so-called detail which we insert into 
missile simulations consists of response functions (transfer functions) which 
represent differential equations with constant coefficients, the solutions to 
which are well known and catalogged. For the sake of computation speed 
these should not be treated the same as the other differential equations which 
cannot be solved exactly. The analytical solutions should be taken advantage of. 

In the sampled-data seeker case chosen for illustration the application is 
straight forward. Moving into the control system, not shown in detail, 
the situation is more complicated because the data flow becomes analog, and 
the concept of "sampling interval" is lost. Still, to do this simulation digitally 
some time interval (or intervals) is chosen by which to advance the solution. 
Use can still be made of exact solutions in many cases, 
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A STRATEGY FOR INTEGRATING PROGRAM TESTING ANT) ANALYSIS 

Leon Osterweil 
University of Colorado 

Roulder, Colorado 

ARSTRACT. This paper presents a view of how the tech- 
niques of static analysis and dynamic program testing can be 
combined and integrated into a too1 supported methodology 
which smoothly incorporates the best features o.f each. The 
paper is composed of two major components. The first is 
more general and descriptive. In it the central importance 
of dynamic testing by means of programmer generated asser- 
tions is stressed first, and some remarks about tool support 
for assertion testing are made, Various weaknesses of 
dynamic testing are then remarked van, motivating the 
desirability of using static analysis as well. The general 
characteristics of static analysis, and especially data flow 
analysis are described next. Static analysis is then 
described as a technique for making certain kinds of dynamic 
testing more efficient and trustworthy. Symbolic execution 
and formal verification are presented next and described as 
logical and important com.ponents of the 
being 

integrated sys tern 
described. The second component of the paper deals 

with TOOLPACK, an integrated ensemble of tools of the types 
described in the first component. The architecture and high 
level design of TOT)L,PACK are described, and some implementa- 
tion plans are presented. 

This work supported by AR0 grant l3AAG 2%80-C-nn34, National 
Science Foundation grants MCS8000017, MCS77-n2194, and 
Department of Energy grant nE-ACn?-8fXR10718. 
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I. INTRODUCTION. Software engineering is a discipline which"- has~-.--‘---~.- 
recently been experiencing a period of consider- 

able but unstructured growth. It now shows signs of embark- 
ing upon a phase of coordination and consolidation. There 
has been a larqe amount of work devoted to the 
of softwre engineering tools. 

development 
This seems to be particularly 

promising work, as tools are vehicles for capturing software 
engineering concepts in a way which is tangible and useful 
to software practitioners. Through well-implemented tools, 
desirable policies can be promulgated and enforced 
throughout a project, in a way which increases the coordina- 
tion and efficiency of that project. 

In the past, the quality of tools produced has been 
spotty. Worse, however, the goals of most tools and the 
domains of their efficacy have rarely been clearly enunci- 
ated, As a consequence, it has been difficult for the com- 
munity of software practitioners to select tools appropri- 
ate for facilitating work on the specific tasks comprising 
their software development activities. ThUS specification 
of the goals and domains of efficacy of a tool should be an 
impor-tant part of its documentation. The availability of 
such specifications should enable practitioners to intelli- 
gently select and configure a set of tools into an snviron- 
ment capable' of supporting specific software production 
activities. 

In this paper we propose a generic configuration of 
too1 capabilities and an approach to building an integrated 
system of such tools, called TOOLPACK. 
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II. CLASS ONE - DYNAMIC TESTING AND ANAJAYSIS TOOLS. 
The 

~~rms~- ~...-'- 
dynamic t estinq-- '%6dPdynamic analysis, as used 

here I are intended to describe most of the systems known as 
execution monitors, software monitors and dynamic debugging 
systems ([IXalz 691, [Fair 751, [Stuc 751 and [Gris 701). 

In dynamic -testing systems, a comprehensive record of a 
single execution of a program is built. This record -- the 
execution history -- is usually obtained by instrumenting 
-the source program with code whose purpose is to capture 
information about the progress of the execution. Most such 
systems implant monitoring code after each statement of the 
3rogram. This code captures such information as the number 
if the statement just executed, the names of those variables 
whose values had been altered by executing the statement, 
the new values of these variables, and the outcome of any 
tests performed by the statement. The execution history is 
saved in a file so that after the execution terminates it 
can be perused by the tester. This perusal is usually 
facilitated by the production of summary tables and statis- 
-tics such as statenent execution frequency histograms, and 
variable evolution trees. 

Despite the existence of such tables and statistics, it 
is often quite difficult for a human tester to detect the 
source or even the presence Of errors in the execution. 
Hence, many dynamic testing systems also monitor each state- 
:nent eqecution checking for such error conditions as divi- 
sion by zero and out-of-bounds array references. The moni- 
tors implanted are usually programmed to automatically issue 
error messages immediately upon detectinq such conditions in 
,arder to avoid having the errors concealed by the bulk of a 
large execution history. 

Some of this can be exemplified with the aid of a sim- 
ele minded program. Figure 1 shows a program whose purpose 
is to produce the areas of rectangles and triangles having 
integer dimensions, when the dimensions are given as input. 
The program, a procedure called area, is divided into two --- 
-najor functional portions. One function, implemented by 
procedure lookup, returns the area of the triangle or rec- 
tangle by using a table looku]n. The two dimensions input 
for the object are used as the first two indices into the 
table, a three-dimensional array, A. If the area of a rec- 
tangle is desired, the value 1 must be input with the dimen- 
sions, a value 2 indicates the area of a triangle is 
desired. A value 0 causes the lookup loop to terminate. 
The value 1 or 2 is used as the third indexing coordinate 
into array, A. 

Array A is initialized by the second functional portion 
of the program implemented by the procedure init. This pro- 
cedure initializes A in a somewhat indirect way, perhaps 
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motivated by an interest in eliminating the need for multi- 
plications. 

In Figure 2 we see the same program augmented by the 
code necessary to monitor for two types of errors --'divi- 
sion by zero and out of bounds array reference. This 
monitor-augmented program is typical of the code which would 
be generated automatically by a straightforward dynamic test 
tool. The monitors are positioned so as to assure that any 
occurrence of either of the two errors will be detected 
immediately before it would occur in the actual execution of 
the program. To a human observer it is obvious that many of 
these probes are redundant. We shall be very much concerned 
with studying the forms of automated analysis necessary to 
suppress such probes, 

Some systems (CFair 751, [Stuc 751) additionally allow 
the human program tester to create his own monitors and 
direct their implantation anywhere within the program. 

The greatest power of these systems is derived from the 
possibility Of using them to determine whether a program 
execution is proceeding as intended. The intent of the pro- 
gram is captured by sets of assertions about the desired and 
correct relation between values of program variables. These 
assertions may be specified to be of local or global vali- 
dity. The dynamic testing system creates and places moni- 
tors as necessary to determine whether the program is hehav- 
ing in accordance with asserted intent as execution 
proceeds. 

Figure 3 shows how the example program might be anno- 
tated with assertions. These assertions are designed to 
capture the intent of the program and explicitly state cer- 
tain non-trivial error conditions, to which this program 
seems particularly vulnerable. Figure 4 shows how the code 
of Figure 1 might be augmented in order to test dynamically 
for adherence to or violation of the assertions shown in 
Figure 3. It shouid be clear from this example that dynamic 
assertion verification offers the possibility of very mean- 
ingful and powerful testing. With this technique, the tes- 
ter can in a convenient notation specify the precise desired 
functional behavior of the program (presumably by drawing 
upon the program's design and requirements 
Every 

specifications). 
execution is then tirelessly monitored for adherence 

to these specifications. This sort of testing obviously can 
focus on the most meaningful aspects of the program far more 
sharply than the more mechanical approaches involving moni- 
toring only for violations of certain standards such as zero 
division or array bounds violation. 

From the preceding discussion it can be seen that 
dynamic testing iS a powerful technique for detecting the 

5118 



presence of errors. Because its results are app1icabl.e only 
to a single execution, however, it cannot be used in any 
obvious way to effectively demonstrate the absence Of 

errors. Thus, it is not by itself .an appropriate technique 
for verification (i.e., the process of showing that a pro- 
gram necessarily behaves as intended). Furthermore, 
although the assertions used for dynamic verification may 
themselves be valuable documentation of intent, dynamic 
testing does not itself create useful documentation of the 
nature of the program itself. Finally it is important to 
observe that the benefits of dynamic testing can only be 
derived as the result of heavy expenditures of machine 
storage and execution time. 
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III. CI,hSS TWO - STATIC ANALYSIS TOOLS. In the 
category of static anal.y~s~Gols, 

- ---- 
we Include all programs 

and systems which infer results about the nature of a pro- 
gram from consideration and analysis of a complete model of 
some aspect of the program. An important characteristic of 
such tools is that they do not necessitate execution of the 
subject program yet infer results applicable to all possible 
executions. 

A very straightforward example of such a tool is a syn- 
tax analyzer. With this tool the individual statements of a 
program are examined one at a time. At the end of this scan 
it is .possible to infer that the program is free of syntac- 
tic errors. 

A more interesting example is a too1 such as FACES 
[Rama 751 or RXVP [Mill 741 which performs a variety of more 
sophisticated error scans. These tools both, for example, 
perform a scan to determine whether all procedure invoca- 
tions are correctly matched to the corresponding defini- 
tions. The lengths of corresponding argument and parameter 
lists are compared, and the corresponding individual parame- 
ters and arguments are also compared for type and dimen- 
sionality agreement. By comparing every procedure invoca- 
tion with i-ts corresponding definition in this way it is 
possible to assure that the program is free of any possi- 
bility of such a mismatch error. Note that this analysis 
requires no program execution, yet produces a result appli- 
cable to all possible executions. This sort of analysis, 
requiring a comparison of combinations of statements, can 
also be used to demonstrate that a program is free of such 
defects as illegal type conversions, confusion of array 
dimensionality, superfluous labels and missing or uninvoked 
procedures. 

Data flow analysis is a still more sophisticated form 
of static analysis which is based upon consideration of 
sequences of events occur-ring along the various paths 
through a program. As such it is capable of more powerful 
analytic results than combinational scans such as those just 
described. The DATIF: System [Oste 761, [Fosd 765 is a good 
example of such a tool. This system examines all paths ori- 
ginatinq from the start of a FORTRAN program and is capable 
of determining tihat no path, when executed, will cause a 
reference to an uninitialized variable. DAVE also examines 
all paths originating from a variable definition and is 
capable of determining whether or not there is a subsequent 
reference to the variable. A definition not subsequently 
referenced is called a " dead " definition. Hence DAVE is 
also capable of showing that a Fortran program is free of 
dead variable definitions. 
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Data flow analysis is based upon examination of a flow 
graph model. of the subject program. The flow graph of every 
program unit is created and its nodes are annotated with 
descriptions of the uses of all variables at all nodes. 
Nodes representing procedure invocations cannot be annotated 
in this way immediately. Figure S shows the collection of 
three annotated flowgraphs which would be created to 
represent the variable usage by the statements of the exam- 
ple proqram of Figure 1. Procedures such as init and lookup 
which invoke 

-- 
no others are completely annotated. For such 

procedures a data flow analyzer like DAT7E woul.d determine 
the presence or absence of uninitialized variable references 
and dead variable definitions. This can be done by using 
data flow analysis algorithms such as LIVE and AVAIL [Hech 
753 to efficiently determine the usage patterns of the pro- 
gram variables along the paths leading into or out of a pro- 
gram node. Tiavinq done this, it is possible to complete the 
data flow analysis of the main proyram. The details of this 
procedure can be found in [Fosd 763. 

In summary we have seen that static analysis can be 
used to determine the presence or absence of certain classes 
of errors and to produce certain kinds of program documenta- 
tion. Uence it is useful as an adjunct to a testing pro- 
cedure and offers weak verification capabiliti.es. It is 
also useful in supplying limited forms of documentation 
(e.g., the input/output behavior or a procedure's parameters 
and global variables). There is currently ongoing research 
which indic.3tes that static analysis, particularly.data flow 
analysis, can be used to both verify and test for'wider 
classes of errors, as well as to produce additional forms of 
documentation (e.g., [Tayl 801). 

Of particular interest to us here is the possibility of 
using static data flow analysis to suppress certain of the 
probes generated hy dynamic assertion verification ,tools as 
part of a comprehensive test procedure. As noted earlier, 
many of these probes generated -by dynamic test aids are 
redundant. Their presence adds to the size and execution 
time of a test run yet has no diagnostic value, Hence an 
aut0mati.c procedure which removes them makes testing more 
efficient. It also serves to focus attention on the impor- 
tance Of exercising the remaining probes. Sometimes it is 
possible to remove all the probes generated by an assertion 
or single error criterion. In this case, it has been de 
facto demonstrated that the error being tested for cannot 
occur, and this aspect of the program's behavior has been 
verified. This perspective shows how testing and verifica- 
tion activities can be coordinated with each other. 

For a specific example of this, let us examine the pro- 
gram in Figure 2. We will demonstrate how the three static 

inational Find data analysis approaches - line-by-line, comb 
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flow - can remove progressively more error probes. It is 
perhaps illuminating to observe that what is being contem- 
plated here is actually code optimization in the classical 
sense (e.g., see rAlle 761, [Scha 731. We are attempting to 
identify and remove redundant code in some cases and to move 
code to more advantageous positions in other cases. Even 
the techniques employed are directly derivative from optimi- 
zation techniques. 

A straightforward line-by-line scan of the program in 
Figure 2 will suffice to remove several test probes. 
Clearly the inequality tests in statements E2, E6, and E9 
must always be true. Hence no more sophisticated analysis 
is needed to justify the removal of these probes. 

A combinational examination of contiguous sequences of 
tests can eliminate other probes. For example, E4 and E7 
contain identical tests, without any intervening flow of 
control or test variable alteration. Hence one of the tests 
can be removed. Similarly, either El0 or El. 3 can be 
removed, and either El1 or El4 can be removed. This sort of 
probe removal is based upon analysis that is quite similar 
to "peephole optimization" [Scha 731. 

Additional probe removal can be justified by data flow 
analysis arguments. This analysis could be used to remove 
the test probes at F4 and E7, as well as the probes at El9 
and F22. It should be noted that this analysis is more 
powerful than the combinational analysis outlined above, and 
thus capable of justifying the removal of the probes named 
earlier. Some insight into procedures for some removal of 
such probes can be found in [Oste 771 and rBol1 791. 

Static analysis can also he used to justify the dele- 
tion of certain probes inserted in response to assertions. 
Note that assertion Al in Figure 3 expands to probe state- 
ments P1,l; Pl,Z: P1,3; P1,4; and P1.,5. Assertion A4 also 
expands to 5 probes in the program in Figure 4. All of 
these probes could be avoided if a static scan were used 
first to determine which (if any) of the procedure parame- 
ters were used as outputs by the procedure. 

In this case static analysis can be used to remove all 
probes resultinq from an assertion. Hence verification of 
the assertion can be achieved. On the other hand, we saw 
that many, but not all, of the subscript range checking 
probes can be removed by static analysis. S;Je shall shortly 
show that some additional probes can be removed by using 
symbolic execution and constraint solving. 

We have thus shown that there are significant assertion 
types and error categories which can be completely verified 
through static analysis. It seems important to determine 
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which other assertion types and error categories give rise 
to probes which can be partially or totally removed by 
static analysis. This is currently an open research area. 
It is clear, however, that assertions of functional equality 
such as A2 and A3 are beyond easy verification by static 
analysis. Furthermore, the removal of subscript range test 
probes involving functions of test variables (e.g., 1 <= J-l 
<= 20 in E8) seems to require either a set of special case 
static analyses or a different more general form of 
analysis. We discuss such a different type of analysis 
next. 
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IV. CLASS THREE - SYMROLIC EXECIJTION TOOLS. By sym- .---.- 
bolic execution, we mean->xprockss of compute@ the values 
of a program's variables as functions which represent the 
sequence of operations carried out as execution is traced 
along a specific path through the program. If the path sym- 
bolically executed is a path from a procedure start node to 
an output statement, then the symbolic execution will show 
the functions by which all of the output values are com- 
puted. The only unknowns in these function5 will be the 
input values (either parameters in the case of an invoked 
procedure or read-in values when a main program is being 
symbolically executed). 

Thus .for example, suppose we symbolically execute the 
path I, 2, 32, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11 in the 
program shown in Figure 1. At node 8 the value of i will be 
given .by " 1 " I and the value of A(l,l,l) will also be given 
by " 1 " . After node 10 has been executed the first time, the 
value of j will be given by "2",, A(1,2,1) will be given by 
" 1 + 1 " . The next time node 10 is symbolically executed j 
will be " 3 " and A(l,3,1) will be "1 + 1 +l." If the path 0, 
9, 10, 11, 10 is symbolically executed, then when node 8 is 
reached the value of i will be an unknown and hence 
represented by "i". The value of A(i,l,l) will likewise be 
represented by " i " . When node 10 is reached for the first 
time j will receive the value "2" and A(i,?,l) will receive 
the value " i + i . " Similarly, the next time node 10 is 
reached j will receive the value " 3 " and A(i,3,1) will 
receive the value "i + i + i". 

A small number of symbolic execution too1 s has been 
built rFIowd 780, [King 761, [Clar 7f;:1. These tools mechan- 
ize the creation of the formulas and maintain incremental 
symbol tables. They employ formula simplification heuris- 
tics in an attempt to forestall the growth in size of the 
generated formulas and foster recognition of the underlying 
functional relations. (It should be noted, however, that 
these simplifiers do not take roundoff error into account 
and, therefore, may misrepresent the actual function com- 
puted by a sequence of floating-point computations). J+?nce 
a symbolic execution tool would report the value of .A(i, 3, 
1) after two iterations of the loop at node 9 to be "3 * i." 

The foregoinq discussion strongly indicates that sym- 
bolic execution is an excellent technique for documenting a 
program, Symbolic traces provide documentation of the 
actual functioning of a program along any specific path. In 
order to use symbolic execution as a technique for testing 
and verification however, it is necessary to augment the 
technique with a constraint solving capability. 

In order to clarify this, let us begin by observing 
that the above described functional behavior occurs only 
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when the given path is executed. In general, however, a 
given program can execute an (often infinite) variety of 
paths, depending upon the program's input values. The con- 
ditions under which a given path is executed can often be 
determined by symbolic execution and constraint solution. 
Consider the program given in Figure 1, as represented by 
the flowgraph in Figure 5. Each edge of the flowgraph can 
be labeled by a predicate describing the conditions under 
which -the edge will be traversed, Thus for example, the 
edge (7,8) is labeled "h > l", the edge (9,11)) is labeled "b 
> 2'", (5,6) is labeled "h < 20" and edge (11,lO) is labeled 
" j < b" (note that node 11 is assumed to represent the loop 
incrementation and termination test operations). Sequential 
control flow edges such as (8,9) and (10,ll) are labeled by 
the predicate "true." Now clearly a given path will be exe- 
cuted if and only if all of the predicates attached to all 
of the path edges are satisfied. Unfortunately, a simple 
textual scan will express these constraints only in terms of 
the variables within the statements. Thus the constraints 
will in general not show their underlying interrelations. 
If the constraints are expressed in terms of the formulas 
derived through symbolic execution of the path, then a set 
of constraints all expressed in terms of the proqram's input 
values is obtained. Any solution of this set of-constraints 
is a set of input values sufficient to force execution of 
the given path. 

It is important to observe that some constraint systems 
are unsatisfiable, indicating that the path spawning them is 
unexecutable. We shall make important use of this shortly. 
bJ0 less important is the observation that the problem of 
determining a solution to an arbitrary system of constraints 
is in general unsolvable. Hence we must not expect' that 
this potentially useful capability can be infallibly imple- 
mented. 

Experimentation has indicated, however, that for an 
important class of programs the constraints actually gen- 
erated are quite tractable lClar 761. 

Testinq and verification capabilities can be achieved 
bY attempting to solve constraints embodying error condi- 
tions and statements of intent. Thus, for example, if we 
create a predicate constraining the subscript i to be "i < 
1 " at statement R, we are specifying an out-of-bounds array 
reference error. This constraint is clearly inconsistent 
with the constraint "i > I" attached to edge (7,8). Hence 
it is impossiSle for the first array subscript at statement 
8 to be below bounds. Hence we have shown that one of the 
tests generated in Figure 2 is superfluous. A symbolic exe- 
cution of a path from node 1 through node 0 will similarly 
show that testinq i against 20 is superfluous for that path. 
The dynamic test-for that error condition can be safely 
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removed if it is shown that all paths through node 8 must 
create constraints inconsistent with "i > 20." In this exam- 
ple that is the case because procedure init does not alter --- 
the value of h and knit is always invoked with h = 20. 
These facts can b-inferred from static analysis. Hence a 
combination of static analysis, symbolic execution and con- 
straint solution can be used to eliminate statement El of 
Figure 2. Similar arguments can be used to eliminate state- 
ments E4, E7, ES, ER, ElO, Eli, El%, E13, El4, El?, El9 and 
E22. 

Statements ES and El5 are particularly interesting. It 
could be argued that static analysis is sufficient to elim- 
inate these subscript checking probes as well. The sub- 
scripts being checked here, however, are functions of pro- 
gram variables. Surely static analysis rules could be dev- 
ised for each of these situations, but other rules would 
have to be devised for other common occurrences. The result 
would be an inelegant mass of special procedures. A sym- 
bolic trace, on the other hand, easily shows a13 functional 
relations, and readily expresses the needed range checking 
tests directly in terms of the input values. Thus the sym- 
bolic execution/constraint solving approach provides an 
elegant technique which avoids the need for the inelegant 
special-cases approach. 

It is important to note that we have analytically jus- 
tified the removal of virtually all subscript checking 
probes from the program in Figure 2. In particular, all 
probes inserted to check the subscripts of statements 8, 10 
and 17 can be removed. Hence we have verified that these 
statements correctly reference array A. 

Although statement El6 is a probe for a different error 
(division by zero) it should be apparent that the analytic 
technique just described can be used to show that the test 
embodied .in El6 is also unnecessary. This error condition 
is expressed as the constraint "xk=$,." This will be incon- 
sistent with any constraint set arising from symbolic execu- 
tion of a path through node 14. Yet static analysis will 
show that node 14 must always be executed prior to node E16. 
Hence it is verified that the division in statement 1R is 
always well defined. 

Probes E17, E18, ~20 and E21 cannot be removed, how- 
ever. In fact symbolic execution of a path such as 34, 35, 
36, 21, 22, 23, 24, 25 yiel-ds only the following con- 
straints:[l] 

---- ---.-- 
[lIThe notation@ should be read as "the ith value taken 

as input, to this path." Hence in this case@means "the 
third value read in." 
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@# 0 (from edge (35,36)) 
a= 1 (from edge (34,25)) 

Thus clearly when statement 25 is encountered@is con- 
strained to be 1, but@and@are subject to no constraints. 
An out-of-bounds subscript error at statement 25 could be 
simulated by any of the constraints icl, i>20, j<l, or j>20. 
After symbolic execution these become@ <l,@ >2fl,@ cl and 
0 2 >20. None of those is consistent with the constraints 
generated by consideration of path edges. Hence a solution 
such as 

= r) 
= 21 
= 1 

can clearly force execution of an array subscript reference 
error at statement 25. Thus WC? see that the symbolic 
execution/constraint solving technique is a powerful testing 
aid. It should be noted that the ATTEST system [Clar 761 
implements most of the capabilities just described. 

Perhaps the most important use Of symbolic 
execution/constraint solution is as a technique for verify- 
ing assertions of functional relations between program vari- 
ables. At the end of the previous section it was noted that 
verification of assertions such as A2, A3, A5 and A6 is 
beyond the power of the static analyzers which had been 
presented. We saw that static analysis is quite adept at 
inferring all the possible sequences of events which might 
arise during execution of a program, and that by comparing 
t.hese with specifications of correct and incorrect 
sequences, testing and verification capabilities are 
obtained. When the statements of correct behavior are 
couched as predicates involving program variables, however, 
symbolic execution/constraint solution is most useful. This 
is not surprising, as symbolic execution is a technique for 
tracing and manipulating the functional relations between 
program variables. 

We have already discussed the fact that the subscript 
references at statements 25 and 27 may cause array bounds 
violations. This was determined by using symbolic 
execution/constraint solution to demonstrate that probes 
~'5~1 and ~6,l are not inconsistent with Path induced con- 
straints. Thus they cannot safely be removed and assertions 
AS and A6 cannot be verified. 

On the other hand, these techniques can hel.p verify the 
correctness of assertions A2 and A3. By using symbolic exe- 
cution for the path Ic), 11, 10, we obtain the relation 

A(i,j,l) = A(i,j-l,l.) + i 
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Viewing this as a recurrence relation whose initial condi- 
tion is given by 

A(i,l,l) = i 

we can obtain the analytic solution 

A(i,j,l) = j * i 

from the theory of finite difference equations. This rela- 
tion is exactly the one asserted by A?. Hence this asser- 
tion is analytically verified and need not be dynamically 
verified, Clearly, this capability rested .hcavily upon 
being able to draw OX1 results from finite mathematics. 
Cheatham has created a to01 with impressive inferential 
capabilities of this sort [Chea ?S], although the problem of 
determining the closed form of a recurrence is in general 
intractable. Also required here is the ability to recognize 
when two formulas are equivalent. This problem is likewise 
intractible in general. 

Additional pitfalls of demonstrating functional 
equivalence are demonstrated by assertion A3. Here we 
easily see that symbolic execution will establish that after 
statement 17 

A(i,j,2) = A(i,j,l)/2.0 

This is mathematically equivalent to the equation 

A(i,j,2) = O.S*A(i,j,l), 

and is readily recognized as being equivalent. Because of 
the peculiarities of floating point hardware, however, the 
two formulas 

A(i,j,l)/?.O and O.T*A(i,j,l) 

will often evaluate to different values. Hence the results 
of symbolic verification and dynamic verification may 
differ. 

Despite these various limitations we are encouraged to 
believe that symbolic execution/constraint solution can be 
used to yield impressive documentation, testing and verifi- 
cation capabilities. Perhaps these limitations can be put 
in better perspective by observing that symbolic execution 
and constraint solution are the basic techniques used in 
formal verification or so called "proof Of correctness" 
([Elsp 721, [Land 7.51, CHant 761). 

In formal verification the intent of a program must be 
captured totally by assertions imbedded according to the 
dictates of a criterion such as the Floyd Method of 
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Inductive Assertions. rFloy 671. The correctness verifica- 
tion is established by symbolically executing all code 
sequences lying between consecutive assertions and showing 
that the results obtained are consistent with the bounding 
assertions. The consistency demonstration is generally 
attempted by using predicate calculus theorem provers rather 
than constraint solvers as discussed here. 

It is crucial to observe, that these theorem provers 
a.re subject to the same theoretical limitations discussed 
earlier. The undecidability of the First order Predicate 
Clalculus makes it impossible to be sure whether a theorem is 
true or false. Hence we cannot be guaranteed of an answer 
t.0 the question of whether a symbolic execution will yield 
results consistent with its bounding assertions. Further- 
more, the symbolic execution may make simplifications and 
transformations of real formulas which do not recreate the 
functioning of floating point hardware. These and similar 
limitations of formal verification have long been ack- 
nowledged. Yet still formal verification is rightly 
regarded as a useful technique capable of increasing one's 
confidence in the functional soundness of a proqram. This 
i s exactly the sense in which the symbolic 
execution/constraint solution technique just discussed 
should be considered worthwhile. 

In fact, this technique is of more worth to a practi- 
tioner than formal verification, because of its flexibility. 
As already observed, formal verification requires a com- 
plete, exhaus,tive statement of a program's intent. The 
technique just described focuses on attempting to justify or 
disprove the validity of individual assertions. This gives 
the practitioner the ability to probe various individual 
aspects of hi-, program as he may desire. From this perspec- 
tive we view formal verification a s the logical, orderly 
culmination of a process of verifying progressively more 
complete assertion sets. This culmination is rarely reached 
due to its prohibitive costs. 
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V. A STRATEGY FOR INTEGRATING TOOL CAPABILITIES. In -- 
this T-secTiFit we propose ~- -wTiGiiFGy~X wFZ3FFhe preceding 
classes of too15 can be combined to address important 
software implementation objectives. 1t seems that in creat- 
ing software the overriding goal is ta create. a product 
which demonstrably meets its current objectives and shows 
promise of being adaptable to meet foreseeable changes in 
the objectives. Much research and experimentation has been 
devoted to studying how to achieve this goal, and much is 
yet to be understood. From this past work, however, a view 
of the software development activity can be safely advanced. 
.A possible diagram of this view of the software production 
activity is shown in Figure 6. 

From this diagram it is clear that the activity should 
be greatly facilitated by automated aids to documentation, 
testing and verification. The preceding sections have pro- 
vided a basis for seeing how such automated aids can be 
fashioned from a coalition of static analysis, symbolic exe- 
cution and dynamic testing aids. we now propose some 
details. 

A. Documentation 

A complete set of program documentation must fully 
describe the structure and functioning of the program. 
Clearly such a set must describe a wide variety of aspects 
of the program. At present it seems that certain of these 
items of description must inevitably be supplied by humans. 
The previous sections of the paper have shown, however, that 
some documentation can be generated by tools. This documen- 
tation is, moreover, probably more reliably and cheaply done 
by such tools. Tn addition, if some documentation is done 
by too1 5, the remaining documentation is likely to be done 
more carefully by humans, thereby suggesting the possibility 
of greater quality and reliability. 

Earlier sections of this paper suggest that static 
analysis tools should be used first to create such documen- 
tation as cross reference tables, variable evolution trees, 
and input/output descriptions of individual variables and 
procedures. Symbolic execution tools can be used next to 
create descriptions of the functional effects of executing 
various paths through the code. With constraint solution, a 
complete input/output characterization of the code could be 
obtained. Performance characteristics can be measured and 
documented with the aid of a dynamic testing tool. It is 
proposed that all this documentation be stored in a central 
data base, forming a skeleton of the complete documentation. 
Editors and interactive systems might be used to gather from 
humans such things as text descriptions of variables and 
procedures. 
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Each of the three tool classes produces a different 
kind of documentation. The types of documentation are only 
loosely related, hence the order of application of the tools 
can be dictated by the importance of each to the particular 
project. It is important to be aware, however, that static 
analysis is relatively inexpensive, symbolic execution is 
relatively expensive, constraint solution is usually quite 
expensive, and dynamic testing can be quite expensive if 
extensive elaborate test runs are done. 

B. Testing 

In a tool-assisted testing activity, the order of 
application of the tools is important. We have seen that 
tools can be used to focus the testing effort on paths and 
situations which appear to be more error prone. This is 
done by elimination of probes which were created to test for 
common programming errors and for adherence to explicit 
assertions. We saw that many probes can be removed by 
application of progressively stronger (and more costly) 
static analysis. Some remaining probes may be removed as a 
result of symbolic execution/constraint solution, We saw 
that these probes are likely to be the more substantive 
ones, monitoring for adherence to asserted functional 
intent. Their removal constitutes significant verification, 
but it can be expected that the cost of this will be rela- 
tive1.y high. Hence symbolic execution shou3.d probably be 
employed cautiously or not at all as a test aid. -_" - 

Finally, a dynamic test tool should be used to gather 
definite information about the existence and sources of 
error in the program. As already noted, testing can only 
show the presence of error in a test case, and even a simple 
program may have an infinite number of possible test cases. 
Hence the too1 aided procedure just outlined has added 
importance in that it helps suggest test cases - namely 
those designed to exercise probes not analytically removed. 

We have seen that testing and verification can be 
c!l.osely related activities. It is important to remember, 
however , that they do di.ffer, most noticeably in their goals 
and placement. in the software production process. Testing 
is the process of looking for errors. It should be viewed 
as an activity which occurs frequently during code produc- 
tion. Verification is the process of demonstrating the 
absence of errors. As s UC-h it should not be undertaken 
until and unless testing has failed to uncover errors. Thus 
it is a less frequent, more critical process, usually war- 
ranting greater expense and thoroughness. Our earlier dis- 
cussion has shown specific ways in which verification 
results can be obtained as outgrowths of testing activities. 
we have also seen, however, that some activities provide 
good verification results but are likely to be relatively 
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costly. Because verification is a less frequent, more crit- 
ical activity the extra cast may well be warranted. 

C. Verification 

A verificatian activity should start out like the test- 
ing activity just described. The first step is to suppress 
error testing probes and probes resulting from assertions. 
Static analysis can be used to suppress some probes, but the 
most significant probes probably can be removed only by sym- 
bolic execution. Verification is achieved on an assertion- 
by-assertion basis only when all probes generated by a sin- 
gle assertion have been removed. In this way stronger more 
complete verification can be obtained incrementally at 
greater cost and effort. Complete formal verification can 
be attempted if desired as the culmination of this process. 

A final word should be said about the need for both 
verification and testing. It has been observed that testing 
cannot demonstrate the absence of errors. Mence verifica- 
tion should be attempted. We have also observed that the 
verification process has its own risks. The most important 
risk is that an assertion verifica,tion attempt may end 
inconclusively because of the failure to determine the con- 
sistency of constraints or the truth of a theorem. A.s 
already noted, this does not necessarily signify the falsity 
of the assertion, just that the verification attempt ended 
inconclusively. Another important risk is that the verifi- 
cation may be successful but rely implicitly upon false 
assumptions about the semantics of language constructs. As 
an example of this, we saw that symbolic executors generally 
make incorrect simplifying assumptions about the functioning 
of floating point hardware. As a result even a complete 
formal verification of program correctness may not com- 
pletely rule out the possibility of an execution-time error. 
Hence it seems that both testinq and verification should be 
considered techniques for raising the confidence of project 
personnel in the software product. Each is capable of bol- 
stering confidence in its own way, and neither should be 
employed to the exclusion of the other. 
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vs. THE ARCHITECTURE AND PESIGN OF TOOLPRCK. We now 
briefq suk&&-~Te progress to-d=-aFh 1981) in designing 
a specific configuration of tools to meet many of the objec- 
tives just described. This tool configuration, named TOOL- 
I’ACK~ZI has as its objective the conveyance of strong 
comprehensive too1 support to programmers who are writing, 
testing, transporting or analyzing mathematical software. 
Hence it must provide strong support for documentation, 
testing, and verification, as well as such code creation 
activities as editing. 

It was decided that it would he prudent to address some 
specific needs of this well-established community as a 
prelude to attempting to address the general needs of a more 
general community, because of the 
building and studying 

lack of experience in 
such such large configurations of 

tools. St is anticipated that experience with systems such 
as TOOLPACK will eventually lead to the establishment of 
guidelines for production of other, perhaps more general, 
tool configurations. 

The following summary is extracted from [Oste 811 I 
wherein additional details can be found. 

Before commencing with description of the design, it is 
important to enunciate the following basic assumptions: 

1. The mathematical software whose writing, testing, 
and analysis is to be supported by TOC)J,PACK is to be written 
in a dialect of Fortran 77, which shall be carefully chosen 
%O span the needs of as broad and numerous a user community 
as is practical. 

7 * . TO0LPAC.K is to be designed to provide cost effec- 
tive support for the production by up to 3 programmers of 
programs whose length is up to 5000 lines of source text. 
TOOLPACK may be less effective in supporting larger pro- 
;jects. 

3. TOOLPACK is to be designed to provide cost effec- 
-tive support for the analysis and transporting of programs 

- _ 1 _ . 1 - - - - - . -  - _ . _  - - -  

rZ]TOOLPACK is a cooperative project involving research- 
ers at Argonne National Laboratories, Bell Telephone Labora- 
-tories, International Mathematical and Statistical Li- 
braries, Inc., Jet Propulsion Laboratory, Numerical Algo- 
rithms Group, Ltd., Purdue [Jniversity, University of Cali- 
fornia a.t Santa Barbara and University of Colorado. The 
:project is being funded by the Dept. of Energy and the Na- 
tional Science Foundation, as well as the participating in- 
stitutions. 
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whose length is up to 10,000 lines of source text. TOOLPACR 
may be less effective in supporting larger projects. 

4. TOOLPACK will support users working in either batch 
Or interactive mode, but may offer stronger more flexible 
support to interactive users. 

A. Overview 

A primary motivating goal of the design proposed here 
is that user support be supplied in as direct and painless a 
fashion as is feasible. In particular, the design attempts 
t0 relieve the user of having to understand the natures and 
idiosyncrasies Of individual TOOLPACK tools. It also 
relieves the user of the burden of having to combine or 
coordinate these tools. Instead the design encourages the 
user to express his needs in terms of the requirements of 
his own so%tware job. The TOOLPACK support system is 
designed to then ascertain which tools are necessary, prop- 
erly configure those tools, and present the results of using 
the tools to the user in a convenient form. 

The design encourages the user to think of TOOLPACK as 
an energetic, reasonably bright assistant, capable of 
answering questions, performing menial but onerous tasks and 
storing and retrieving important bodies of data. The aim of 
this is to make humans more effective in creating, document- 
ing, testing and verifying program code. 

In order to reach this view, the user should think of 
TOOLPACK as a vehicle for establishin and maintaining a 
file system containing all information important to the 
user, and using that file system to both furnish input to 
needed tools and capture the output of those tools l 

Clearly, such a file system is potentially quite large and 
is to contain a diversity of stored entities. Source code 
modules would certainly reside in the file system, but so 
would such more arcane entities as token lists, and flow- 
graph annotations. In order to keep TOOLPACK's user image 
as straightforward as possible this design proposes that 
most file system management be done automatically and inter- 
nally to the TOOLPACK system, out of the sight and sphere of 
responsibility of the user. The user, in addition is to be 
encouraged to have access to only a relatively small number 
of files - only those such as source code modules and test 
data sets which are of direct concern to him. The user may 
create, delete, alter and rename these entities. More 
important, however, the user may manipulate these entities 
with a set of commands which selectively and automatically 
configure and actuate the TOOLPACK tool ensemble. The com- 
mands are designed to be easy to understand and use. They 
borrow heavily on the terminology used by a programmer in 
creatinq and testing code, and conceal the sometimes 
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considerable tool mechanisms needed to effect the results 
desired by the user. 

I3 . User Visible File System Entities 

In order to encourage and facilitate the preceding view 
0 f TOOLPACK, the system will support the naming, storage, 
retrieval, editing and manipulation of the following classes 
of entities, which should be considered to be the basic 
objects of TOOLPACK: 

1. . Proqram units: 

A TOOLPACK program unit (WJ) is the same as a Fortran 
program unit, except that TOOLPRCK will. require a number of 
representations of the program uni"t other than the source 
code (e.g., the corresponding token list and parse tree). 
The identity, significance, and utilization of these other 
representations are to be made transparent to the casual 
user. They will be managed automatically by the TOOLPACR 
system. On the other hand, they will be accessible and 
usable by more expert users through published standard nam- 
ing conventions and accessing functions. 

; !  l Execution rlnits: 

Any set Of TOOLPACK program units which the user 
chooses to designate, can be grouped into a TOOLPACK execu- 
tion unit (EU). Other execution units may also be named as 
constituents of an execution unit, as long as no circularity 
is implied by such definitions. Ordinarily it is expected 
that an execution unit will be a body of code which is to be 
tested as part 0 f the incremental construction process. 
Hence an execution unit might be a set of newly coded pro- 
gram units and a test harness. It is, however, not unrea- 
sonable (and indeed potentially quite useful.) to consider a 
subprogram library to be an execution unit as well. Siere, 
too, a TOO&PACK execution unit will consist of more than 
just source text, but the user wil.1 not need to be aware of 
the existence of any such additional entities. 

An execution unit may also include optionally specifi- 
able transformation specifications in order to enable users 
to painlessly apply canonical transformations to their code. 
This will facilitate such functions as porting of code and 
coding in higher level pseudolanguages and languages such as 
F:ATFOR [Kern 751 and EFIL, CFeld 781. The preferred syntax 
for specifying the attachment o-E such transformation specif- 
ications to an EU has not yet been decided upon. It does 
seem clear, however, that this specification would be 
straightforward to accomplish i. f the TOOL~ACK command 
language were functional in structure. 
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3. Test Data Collections: 

A TOOLPACK test data collection (TlX) is a collection 
of test data sets to be used in exercising one or more TOOL- 
PACK execution units. A test data collection may consist of 
one or more sets of the complete input data needed to drive 
the execution of some EIJ. Each test input data set may also 
have associated with it a specification of the output which 
is expected in response to processing of the specified 
input. 

4. Options Packets: 

A TOOLPACK options packet (OP) is a set of directives 
specifying which of the many anticipated options are to be 
in force for a particular invocation of one of the TOOLPACK 
tools. We see, for example, the need for Test Option Pack- 
ets (TOP's) to specify dynamic -testing probe insertion 
options. 

The reason for defining these four entities as being 
basic to TOOLPACK is that they seem to facilitate the key 
processes of creating, transporting, documenting, testing, 
and verifying program code by giving the user considerable 
power and very broad flexibility in specifying how these 
activities are to be done. This design is intended to make 
it straightforward for the user to manipulate programs and 
to desiqnate any body of code as the object of documentation 
testing-and verification: and to make it easy for the user 
to select various degrees of riqor and thoroughness in 
analyzing and testing that code by exercising it with test 
data sets selected from the file system. This can perhaps 
best be seen by introducing the TOOLPACK command set and 
indicating how it is to be used to manipulate these named 
data entities. 

C. The TOOLPACK Command Language 

As indicated earlier, the exact syntax for the TOOLPACK 
command language has not been established and is still under 
study. A decision on a specific syntax will be made in the 
near future, and is likely to reflect our current predispo- 
sition towards functional notation. 

Currently we are 'in a position to specify much, of the 
semantic content of this language, In the following sec- 
tions we name generically and characterize generally the 
major primitive functional capabilities currently antici- 
pated. 

The proposed TOOLPACK functional primitive set seems to 
divide logically into four parts: file system management 
primitives, edit (synthesis) primitives, too 1 application 
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(analysis) primitives, and perusal primitives. In the fol- 
lowing subsections, the needed primitives will be discussed 
individually. Specific names and syntax are attached where 
necessary only as an aid to the discussions, rather than as 
a concrete proposal. 

1. l Data Base Manipulation Primitives 

a. NEW entity 

Invocation of this primitive results in the creation 
within the TOOLPACK file system of a specific entity, named 
as an argument to the primitive, which is either a PU, EU, 
TIE, or OP, as specified by the user. It is proposed that a 
TOOLPACK entity name be qualifiable by a structured qualifi- 
cation scheme facilitating the process of keepinq backup 
versions, formatted versions, and transformed versions of 
c:ode, and variously instrumented versions of EU's. 

In addition, to simplify creating the named entity 
within the TOOLPACK data base, it is proposed that the NEW 
invocation also automatically invoke a special purpose 
tutorial/editor to assist the user in creating the desired 
entity. This is currently under discussion and not a firm 
part of the design. In the case of a NEW PU, that would be 
a text editor or Fortran intelliqent editor. Special pur- 
pose editors might also be built to support the creation of 
MEW EIJ's OP's and TX's as well. 

b. OLD entity 

Invocation of this primitive will cause the retrieval 
of the named entity and invocation of the editor appropriate 
for the type of the named entity. 

C. DELETE entity 

Invocation of this primitive results in the named 
entity being marked for deletion by the TOOLPACK file sys- 
tem . 

d. REPLACF 

Invocation of this primitive results in the entity 
currently being edited being stored back in the TOOLPACK 
file system. Ordinarily, the edited source image supplants 
the unedited source image and any currently stored images 
which have been derived from the source are automatically 
deleted by the TOOLPACK file management system. If, how- 
ever, a new entity name is specified as an argument to this 
function, then the currently stored entity i s left 
untouched, and a new entity is created and initialized to 
consist of the newly edited source text. 
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e. RENAME 

Invocation of this primitive simply changes the name of 
an entity. 

2. Edit (synthesis) primitives 

ED1T~entit.y 

Invocation of this functional primitive would have 
basically the same effect as that of the OLD primitive. The 
appropriate editing capability would be summoned, and the 
named entity would be retrieved from the file system and 
readied for manipulation. 

It is important to point out that this latter operation 
is expected to require a considerable amount of care and 
sophistication if it is to be done effectively in the gen- 
eral case. This is because of the TOOLPACK philosophy of 
considering some of the file system entiities to be accessed 
and manipulated individually. As a result it is conceivable 
that a user might access and alter a PU's parse tree, but 
never access the source text (or vice versa). In such a 
case it would be necessary for the TOOLPACK file management 
capability to be aware of the fact that inconsistency had 
been introduced between these two PU versions. Although 
this inconsistency may be tolerable for a while, a strategy 
for recognizing how and when to remedy it will have to be 
evolved. For example, the PrJ's source text might not need 
to be altered to become consistent with an altered parse 
tree until and unless the user were to attempt to access the 
source text (e.g., through OLD or EDIT). 

More complicated situations may arise in carrying out 
operations on ETJ' s, It is expected that users will be able 
to edit the source text of an entire EU by being given 
access to the source text of each of its comprising PU's. A 
strategy must be evolved, however, for dealing with the 
impacts of changes thereby made to the source texts of NJ's 
incorporated into several different JXJ's. Likewise, a stra- 
tegy is needed for correctly and efficiently effecting the 
execution of an ETJ which has previously been executed, but 
which contains some constituent PTJ's which have been EDIT'ed 
in the interim. 

In solving such problems we intend to be guided to good 
solutions by the strategy successfully employed in the MAKE 
capability [Feld 793. 

It is important to note that all of these sorts of 
problems could be addressed expediently, but inefficiently, 
by adopting a strategy of retaining little in the file SYS- 
tern and purging entities from it upon any suspicion that 
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they might become inconsistent. This strategy could be 
adopted for early releases of TOOLPACK while more efficient 
strategies are evolved and tested. 

.3 . Tool Invocation (Analysis) Primitives 

These primitives invoke the functions which are at the 
heart of the reason for the TOOLPACK project - namely the 
facilitation of documentation, testing and verification. 
Consequently, great pains are being taken to make them easy 
to understand and use. In an important sense, the rest of 
the TOOLPACK primitive set has been designed so as to make 
these tool invocation primitives straightforward. 

a. FORMAT entity [option packet] 

Invocation of this primitive causes a named program 
unit to be taken as input to the TOOLPACK formatting tool. 
The resulting output text will supplant the original source 
text, and any derived imaqes of the original source text 
will be deleted, unless a new entity name is also specified. 
In case a new enti-ty name is supplied, the output of the 
formatter will be named with this new name and stored in the 
'COOLPACK file system as source text. It is expected that 
option packets will be specifiable in order to facilitate 
user seiection from among many formatting options. 

b. STRUCTURE entity [option packet] 

Invocation of this primitive has the same effect as 
invocation of the PORMAT command, except that the TOOLPACK 
structurer is invoked instead of the formatter. 

C. ANALYZE entity [option packet] 

Invocation of this primitive results in the static 
analysis of the entity named. If the entity is a program 
unit, then single unit analysis will be performed. If the 
entity is an execution unit, then each program unit will be 
analyzed individually and integration analysis will also be 
performed. 

An options packet may be specified by the user. This 
packet will enable the user to specify a level of thorough- 
ness which will cause analysis to go as far as the lexical 
:Level, the syntactic level, the static semantic level or the 
data flow level. If this specification is omitted, the 
TOOLPACK system will select a default option (probably full 
data flow analysis). 

The results of this analysis will be placed into an 
entity-attribute-relational data base which will then be 
available for perusal by a browsing subsystem to be 
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described subsequently, or for use as the basis for report 
generation tools whose goal would be the creation of supe- 
rior documentation. 

It should be clear that invocation of the ANALYZE com- 
mand will effect the marshalling and configuration of a con- 
siderable assortment of tools and tool fragments. In addi- 
tion, the stronger forms of analysis will necessitate the 
use of a number of intermediate images of the source text 
(e.g., parse tree, flowgraph, callgraph). As stated ear- 
lier, an important design cri,terion was that these maneuver- 
ings and the materialization of these intermediate images be 
concealed from the user and made the responsibility of the 
TOOLPACK system. 

d. EXECUTE TEST EUname, TDCname, OPnarne 

Invocation of this primi-tive results in the dynamic 
test execution of a collection of test data sets by a speci- 
fied execution unit. The test data sets comprising the test 
data collection "TDCnamc" are fed into the execution module 
derived from the execution unit "FUname" one at a time, with 
the results of each execution being used to build an execu- 
tion history data base. This data base also would be used 
to supply answers to user-posed questions as well as reports 
needed for documentation purposes. 

The user may optionally specify a test options packet 
whose purpose is to select and specify which of the numerous 
execution monitoring options are to be employed during the 
test runs. The power and flexibility of the dynamic test 
monitoring system is to be considerable (see CFeib 813). 
This is deemed to be necessary, but is also considered to he 
a serious problem, in that a casual or novice user may be 
intimidated by the variety of available choices. Hence it 
is proposed that a set Of standard Test Option Packets 
(TOP's) be prepared by the builders of the dynamic test mon- 
itoring system and stored permanently in the TOOLPACK file 
system. TJsers could select from among these, tailor them to 
individual needs by using the TOP editor, or create their 
own TOP's from scratch. One of the standard TOP's would be 
configured to be the default TOP, enabling the user to do 
useful dynamic testinq without needing to specify any TOP. 

The actions occurring in response to an EXECUTE TEST 
invocation are expected to be extensive and complex. Here 
too, every effort has been made to conceal this complexity 
from the user while still offering considerable flexibility 
to construct testing situations and have them carried out 
with minimal expense through extensive reuse of intermediate 
data objects and entities. 

n. rerusal Primitives 
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TOOLPACK will ultimately contain tools to facilitate 
the examination of the various entities in the TOOLPACK file 
system. This document has already described various special 
purpose editors, part of whose purpose will be to facilitate 
examination of the user-named file system entities (e.g., 
the PU source text, EU's, OP's and TDC's). 

A different sort of tool is desirable for use in perus- 
:ing the output of the static analysis and dynamic testing 
tools. As already noted, these tools will produce as output 
sets of analytic and diagnostic packets which could profit- 
ably-be viewed as relational data bases. Tools fo r effec- 
tively browsing these data bases could be specifically con- 
structed to efficiently scan these data bases for answers to 
expected queries. Existing text editors will probably serve 
as primitive forerunners of these tools in early releases of 
TOOLPACK. 

Although it is probable that there will eventually be 
different browsers for browsing the static analysis and 
dynamic testing data bases, it is expected that they will 
both be invoked by the same command: 

RROWSE[datahasename] 

The databasename is one which will be automatically 
Icreated by the TOOLPACK system by a straightforward naming 
Xalgorithm. For example, the data base produced by test run 
# n of TDC t applying TOP p to EIJ c would perhaps be named 
e/p/t/nDR. After each test run the user would be supplied 
this name and the size of the data base itself and offered 
the opportunity to SAVE the data base. SAVE'd data bases 
would then be available for subsequent E3ROWSE'ing. 

The data base name would be optional in the BROWSE com- 
mand. When omitted the data base last generated would be 
assumed. 

The BROWSE command processor would determine from the 
data base name the type of data base to be l3ROWSE'd (static 
'or dynamic) and invoke the necessary browsing tool. 

E. An illustration of how the TOOLPACK architecture might 
.be used to support the process of constructing a program 

The following diagram is inserted here in an attempt to 
demonstrate that the TOOLPACK system architecture, as 
presented here, is capable of satisfying the requirements to 
which the TOOLPACK group has addressed its efforts. Thus 
the diagram is intended to show that individuals attempting 
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to perform code creation, as outlined earlier in this docu- 
ment, can be significantly aided and supported by the TOOL- 
PACK system architecture a5 described. The diagram depicts 
what is though,t to be a reasonable procedure for code crea- 
tion. ITence the fact that it seems to be strongly supported 
by the proposed architecture is taken to be encouraging. 

It is not claimed here that this activity diagram is a 
paradigm of "proper procedure." Hence readers who perceive 
or pursue this task in a different way should not feel that 
TOOLPACR disapproves of them or Will not support them. 
Rather, such readers are strongly encouraged to determine 
whether the TOOLPACK system will be useful to them in sup- 
porting their activities. 

In particular it should be noted that no symbolic exe- 
cution or formal verification capabilities are currently 
proposed for inclusion in TOOLPACK, nor are they included in 
the activity diagram. This refl.ects the perception that 
mathematical software writers currently go about their work 
without these capabilities. As discussed earlier, these 
capabilities are regarded as being of great potential value 
and importance. Hence it is expected that they may be 
included in future releases of TOOLPACK. 

Comments and Elaboration on Major Activities 

1. Create regimen of test cases and required outcomes: 

An editor is used to create these TX's; results are 
stored in the data base for subsequent use, each TDC is 
indexed by a name supplied by the user. 

7 *. Compose new source text: 

A text editor is used for source code creation. The 
editor may be language dumb, or may incorporate various 
types of language awareness - e.g., may parse input, accept- 
ing only syntactically correct source, and outputting parse 
tree and/or token list: may automatically do some polishing 
as well. The output of this process may be PU source text, 
token list, parse tree or some combination of the three. 
Whatever the output, it is to be stored in the central file 
system indexed by PU name and version id., perhaps supplied 
by the user. The user may also define ETJ's as sets of PIJ 
versions and transformation specifications and assign these 
EIJ's names, thereby creating other file system entities. 

3. Polish and/or structure text: 

The user may at this point wish to polish and or struc- 
ture source text created. There is to be an automatic purge 
of unpolished version of the PU from file system, unless the 
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LlS@lC directs that the polished version be saved under new 
version name. 

4. Perform static analysis: 

The user requests "ANALYZE" and specifies a level of 
thoroughness for analysis and an EIJ (by name). 
be defined at 

New EU's may 
this 

anaiysis is 
point. Single unit and integration 

done - lexical, syntactic, static semantic and 
data flow - at user option. A data base of analytic results 
is created for browsing by means of the J3ROWSE subsystem. 

5. Set up test runs: 

The user creates TOP's, specifyinq types and thorouqh- 
ness of dynamic monitoring. He may modify or create new 
TDC's here as well. This is basically an editing activity. 
The user must create new TlX’s or access TlX's created in 
activity 1; an interactive editor would be useful here: a 
source text editor may be used to inject new assertions in 
the source text: a TOP editor may be used to build and 
modify various TOP's. 

6. Run dynamic test(s): 

The user specifies a sequence of test runs as a 
sequence of triples (EU,TOP,TSX) of named database entities: 
test runs are made and results go into relational data bases 
for perusal by the BROWSE processor. 

This involves automatic instrumentation, compilation, 
link editing (including fetching of run-time libraries to 
support monitoring) creating data bases of results, creating 
and presenting to user of requested results. 

7. Drowse source text and test execution results: 

This involves use of a query system and information 
management .systsm to help the user identify and understand 
errors well enough to fix them. 
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VII. 017ERVIEW OF TOOLPACR IMPLEMJWITATION APPROACH. 
The precedi~~-.--~ecti-~~ --I---- . was 

('i‘e"vo t ~~.-~~. ~-~re sag t a t~.onof- a 

user's view of the TOOLPACK system. Th e purpose of this 
section is to suggest an interior, or implementor's, view of 
the TOOLPACK system. This section is not purported to be a 
complete design specification. It is offered, rather, in 
support of the contention that the TOOLPACK system, as 
presented, i s eminently implementable with existing 
knowledge and technology. Hence the reader should feel com- 
fortable in considering the merits of the proposed set of 
capabilities freed, to some extent, of worries about its 
realizability. 

A. The File System 

Clearly the primary feature of the proposed TOOLPACK 
system is the central file system of information about the 
subject program, The user is encouraged to think and plan 
his work in terms of it, and the functional tools all draw 
their input from it and place their output into it. 

This file system is to be initialized with the start of 
a project and remain and grow throughout the lifetime of the 
project. There is no reason why 3-3 usc.rs may not all 
access this file system al.though we will make the implicit 
assumption that it is accessed by one user at a time in a 
non destructive way. 

The TOOJ,PACJ< system itself will manage tile file system 
primarily by means of a tree structured directory system and 
a modular set of file accessing and updating primitives. 
TDOLPACK files will not correspond directly to host machine 
files, but will rather be mapped onto segments Of one or 
more large host system files. The TOOLPACK file accessing 
and updating capabilities will effect this segmentation and 
operate directly upon these large host system files. The 
object of this approach is to reduce the overhead of dealing 
di-rectly and depending ton heavily upon host file systems. 
An implementation of such a set of I/O capabilities (called 
PIOS) has been written in portable Fortran [Hans ona]. 
Experience with this system has shown that this approach can 
be pursued without unacceptable loss of speed and effi- 
ciency. Thus, this system is expected to be used at least 
as a guide to an effective rnodularization o-E capabilities, 
and will perhaps, be incorporated into TOOLPACK in toto. 

A tree structured file directory system (PDS) has also 
been written in portable Fortran [Hans R0h7. This is also 
quite appealing as- at least a model of effective functional- 
ity and modularization, and perhaps as a body of code to be 
directly incorporated into TOoLPACK. tt offers the added 
feature of being designed for ready interfacing with PIOS, 
thereby forming a portable file directory a nd accessing 
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mechanism. This tandem will go far towards implementing the 
TOOLPACK file system. 

I3 . The Virtual Aspect of the File System and the Retention/ 
Replacement Module 

A stated design objective for TOOLPACK is that it run 
f2ffectively on a wide range of machines effectively utiliz- 
ing larger amounts of storage when and if they can be made 
available. One tray in which large amoun,ts of storage can be 
effectively utilized is to store all derived and intermedi- 
ate entities for possible future reuse. Storage economies 
can be gained by refusing to store those entities and 
instead regenerating them as needed. The strategy for 
retaining or regenerating these entities must be adjustable 
and transparent. It is highly desirable that both the end 
user and the tool ensemble always be safe in assuming that 
any needed named entities and derived images will always be 
available. Thus it is necessary that the TOOLPACK file 
management system assume the responsibility for either 
retrieving these items directly or having them created or 
regenerated (in case storage exigencies precipitated their 
deletion by TOOLPACK). 

Perhaps the workings of this virtual file system scheme 
can best - be understood through an example. Suppose one of 
the functional tools (e.g., the static analyzer) needed 
access to the parse tree of a particular version of a par- 
ticular WY, let us call it S;rJBR/VER. The tocll would request 
(and subsequently receive) the parse tree through a subrou- 
tine call such as 

CALL DBPTCH('SURR/VER/P', ARRAY, LEN) 

where ARRAY is the name of the array within the too1 which 
is to receive the parse tree, and LEN is a specification of 
the length of ARRAY, included in this invocation to guard 
against inadvertent array overflow. 

Subroutine DRFTCH would then, USf2 'SUBR/VER/F' as an 
index into the TOOLPACK file system directory in order to 
look.up the internal designation of the TOOLPACK file con- 
taining the parse of SJJBR/VER. Should there actually be 
such a TOOLPACK file, there would also be a length specifier 
for it. The length specifier would be used to determine 
whether the invoking tool's array was large enough to hold 
the parse. If so DBFTCH would need only to invoke a file 
I/O primitive to read the indicated TOOLPACK file into the 
invoking tool's array. 

If the directory contained no entry for the pa*se c?ee, 
DBFTCH would need to see that a parse was crea@d'. Guidance 
for this process would come from an internal table 

--.I-._ _ 
585 



specifying how the various TOOLPACK derived images are to be 
derived from each other. This table would be essentially a 
directed acyclic graph (DAG) with the nodes representing the 
various file system entity types, and the edges representing 
processing capabilities. In particular, an edge would 
represent the processing capability needed to produce the 
entity at its head from the entity at its tail. It is worth 
notinq that the production of some entities (e.s., an anno- 
tated‘- flowgraph) might require that more than one process 
acting on more than one file system entity. 

In-any case DRFTCH would, from this table, produce an 
ordered l-ist of the processes and entities wh ich would be 
needed to produce the requested entity bY traversing the 
dependency DAG. DBFTCI'I would then proceed down this list 
looking to see which entities are already stored in the file 
system l tJsing this information D,RE'TCH would then invoke in 
the correct order only those processes needed to produce the 
desired entity. 

Returning to our example, DBFTCH would look up 'P' in 
the dependency DAG, which would then show that a parse tree 
is derived from a token list by a parser and a token list is 
derived from a source string by a lexical analyzer (lexer). 
Thus DBFTCH would next check for the existence in the file 
system of the token list for S1JRR/VEP. If it is present 
DBFTCiI will invoke the parser producing the required parse 
tree. If the token list is absent, r)nFTCH will first invoke 
the lexical analyzer to produce a token list from the source 
text, and then invoke the parser. If the source text should 
not he in the file system,. an error message would be passed 
on to the user. 

This virtual file system scheme could be stretched even 
farther. Although it is currently anticipated that the file 
system wilL hold in explicit form any formattings and struc- 
turing of a given piece of source text, this is not neces- 

Y. -I__.-. sary. Such vegsions. could be recreated by the file manaqe- . . . . ment system only when needed by following a procedure such 
-as just outlined. Even whole static analysis or dynamic 
testing data bases could be regenerated in this way. This 
gives the file management system the flexibility to purge 
large files to regenerate storage while stiL1 retaining the 
ability to recreate these files when necessary. 

This feature should prove particularly useful in host- 
ing -the TOQL,?ACK system on smaller storage machines. Here 
it may be necessary to permanently store only source text. 
1Jndcr these circumstances all derived images and intermedi- 
ate entities will be routinely purged, requiring that they 
be r‘ecreated whenever needed. This will result in extra 
computa- time to meet the user's request, but seems a 
very reasonable trade for the lack of storaqe. , .--- 
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In order for this scheme to work best the strategy for 
deciding which entities to delete and when to delete them 
must be carefully determined. There appears to be little 
experience in devising such strategies. Yence we must 
Iexpect that a lengthy period of experimentation, observation 
and adjustment will be necessary. ThUS OUT 

replacement/retention strategy will be encapsulated in a 
module to facilitate such experimentation and adjustment. 

c * The Command Language Interpreter 

As noted earlier, the TOOLPACK command lanquage syntax 
has yet to be decided upon. Nevertheless, it is reasonable 
at this stage of design to sketch the architecture of the 
processor which must effect the execution of TOOLP.ACK com- 
mands. 

This processor - the TOOLPACK command interpreter - 
will probably consist of three phases: command syntactic 
analysis, command decomposition into TOOLPACK functions, and 
sequential TOOLPACK function invocation. 

Of the three, the first, syntactic analysis, should be 
the most straightforward. Once a command syntax is agreed 
to, a parser generator should suffice for the production of 
a parser capable of rendering commands into trees of command 
tokens. Straiqhtforward though this may appear, it seems 
important to isolate syntax analysis in a separate phase in 
order to facilitate change. It is recognized that users' 
reactions .to TOOLPACK may be strongly influenced by the per- 
ceived friendliness and ease of use of the command language 
itself. It thus seems important to enable changes in the 
language when and if experience indicates they are desir- 
able. This will clearly be facilitated by using a parser- 
generator-created parser as the first phase of the command 
interpreter. 

The second phase, command decomposition, will be more 
complex entailing 1) the selection of the standard template 
of TOOLPACK functions indicated by the command and 7) the 
elaboration of this template as indicated to be necessary by 
option selections, file system status, and reporting and 
contingency handling directives. In particular, it is 
expected that the semantics of each TOOLPACK command will be 
defined at least generally by a standard sequence of TOOL- 
PACK functional processing steps to be performed by indivi- 
dual too1 fragments. The flow of data structures through 
these fragments will be effected by the definition, creation 
and accessing of entities within the file system. Thus, the 
construction of specific file system primitive invocations 
will also be the responsibility of this second phase, Sn 
view of the preceding discussions of the virtual file system 
concept, it is clear that the regeneration and updating of 
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file system entities may also be entailed during command 
elaboration. 

The end product of this phase is expected to be a 
sequential file of TOOLPACK directives describing in detail 
all steps needed to he carried out by TOOLPACK tool frag- 
ments in order to effect the specified command in the exact 
context of the current state of the TOOLPACK file system. 
As such this phase might well be viewed as a pseudocompila- 
tion into a machine independent intermediate code. 

The final phase is the actual interpretation process. 
Here tool fragments and file system accessing primitives are 
invoked in the indicated sequential order, with allowances 
being made for alteration of sequencing due to errors or 
other contingencies. 

n. Major TOOLPACK Functional Commands 

As an aid to understanding how major TOOLPACK func- 
tional capabilities are to be fashioned out of smaller tool 
fragments, we now include diagrams indicating the way in 
which we propose to effect the implementation of two major 
functional commands. 

1. AJJALYZr;: (Static Analysis) 

Figure 8 is a diaqram showing how execution of the 
ANALYZE command will be effected by the operation of TOOL- 
PACK tool fragments on file system entities. Some of these 
entities will be created I'Y these fragments, but others 
(such as the token list and symbol table) should be thought 
of as perhaps having been created by the execution of other 
TOOLPACK commands. 

File system entities are identifiable as being shown in 
squared boxes. Tool fragments are shown in circles or 
ovals. It should be noted that most of the indicated too1 
fragments have been built in at least prototype form as part 
of the DAVE project at the TJniversity of Colorado. 

2. EXECUTE TEST (Dynamic Testing) 

Figure 9 shows how execution of the EXECUTE TEST com- 
mand will be implemented by tool fragments and functional 
capabilities (such as compilation and loading) t-0 be bor- 
rowed from the host operating system and environment. It 
has been suggested that the testing capability as proposed 
in the NEWTON report [Feib Sll is too general to be comfort- 
ably thought of as a single functional capability. Hence 
the subdivision of NEWTON into smaller tool fragments and 
the introduction of several more sharply named and focussed 
capabilities is being studied. 
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3. Symbolic Execution 

No symbolic execution capability is currently being 
planned for inclusion in early releases of TOOLPACK. This 
decision is influenced by the relatively high cost of creat- 
ing this capability and its unfamiliarity to the TOOLPACK 
target user community. Roth of these considerations are 
expected to change with time, encouraging the eventual 
inclusion of symbolic execution within TOOLPACK. This will 
be facilitated by the establishment in early TOOLPACK 
releases of a core set of tool fragments upon which a SW- 
bolic execution capability can be built at a later date. 

VIII. SUMMARY. 
indivm1 

Considerable experience with isolated 
tools has led us to believe that comprehensive 

collections of tools are possible and desirable. Logical 
tool integration strategies are now perceptible and are also 
reasonable as objects of experimental study. The TOOLPACK 
architecture is one such strategy. A system of this sort is 
under design and will be built and studied. 
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I. 

2 

3 

4 

5 

6 

7 

13 

9 

/II 

11 

12 

13 

14 

15 

16 

17 

18 

19 

%r) 

21 

22 

23 

24,25 

26, Y?7 

PROCEDURE AREAS; --- 

DECLARE REAT, A(20,20,2), INTEGER Pl, P2, P3; --__.-._ -.--- ----.- 

PRC)CEDURE INIT (H,B): -.-.,- 

DECLARE INTEGER H, R, I, J, K, REAL XK; --- 

IF H > 20 THEN ERROR STOP: -- ----- 

IF R > 20 THEr1 ERROR STOP; -- ,- 

DO FOR I = 1 TO FI: -- .- - 

A(1, 1, 1) = I: 

DO FOR J = 2 TO B: - -- - 

A(1, J, 1) = A(1, J-l, 1) + I: 

EPTD ; 

END: 

K = 2; 

XK = 2.0; 

DO FOR I = 1 TO HI; -- -11 - 

DO FOR J = 1 TO I3; --- .- - 

A(1, J, K) = A(1, J, K-l) / XK; 

END; 

END ; --- 

ENP; 

PROCEDURE LOOKUP (I, J, K): ---- 

DECLARE INTEGER I, J, K: 

CASE: -- 

K = 1: PRINT "AREA OF" I, J "R.ECTANGLE IS" 
A(I, J,--FF 

K = 2: PRINT "AREA OF" I, J "TRIANGLE IS" 
A(1, J,K)t- 
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28,29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

ELSE: PRINT "PARAMETER ERROR: K = " K; 
-- 

END; 

END; 

CALL IMIT (20,20); 

LOOP FOREVER: -- 

READ Pl, P2, P3; _- 

IF P3 = 0 THEN STOP; -- -- 

ELSE CALL LOOKTJP (Pl, P2, P3); - -- 

END: --- 

END ; -- 

FIGIJRE 1: An example program 
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7 

El 

E:2 

E3 

8 

9 

E4 

ES 

E6 

E7 

E8 

I?9 

10 

11 

12 

13 

14 

PROCEDURE AREAS: -- 

DECLARE REAL A(20,20,2), INTEGER Pl, Pa, P3; _- ----- 

rRocE~mE IMIT (H,B); 

DECLARE INTEGER H, B, I, J, K, REAL XK; ----_--. ._ . ., 

IF H > 20 THEN ERROR STOP; - ---- 

,IF B > 20 THEN ERROR STOP; -- - 

DO FOR I = 1 TO H: --- - - 

&F -(I <= I <= 20) THEN SUBSCRIPT RANGE ERROR: -- 

IF -(l <= 1 <= 20) THEN SUBSCRIPT RANGE ERROR; - --- ---- --- 

x -(l <= 1 <= 2) THEN SUBSCRIPT RANGE ERROR; 

A(1, 1, 1) = I; 

DO FOR J = 2 TO B; -~ - 

;;,;;1 <= 1 <= 20) YEN 
: .-- 

&2 
<= ,J <= 20) THEN 

; ---- 

IF -(l <= 1 <= 2) THEM 
ERROR: 

-- 

IF -(l <= I <= 20) THEN 
ERROR: 

IF "(I <= J-l <= 20) THEN 
765~0~: 

-- 
-- 

;gR;;l <= 1 <= 2) THEN 
: 

SUBSCRIPT RANGE -- -- 

SUBSCRIPT RANGE 

SURSCRIPT RANGE 

SUBSCRIPT 

SUBSCRIPT --.- 

SUBSCRIPT 

AtI, J, 1) = A(1, #J-l, 1) + I; 

END: -- 

END; 

K = 2; 

XK = 2.0: 

RANGE -- 

RANGE 

RANGE 
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15 

16 

Elr) 

El1 

El2 

El3 

El4 

El5 

El6 

17 

18 

19 

20 

21 

22 

23 

24 

El7 

El8 

El9 

25 

Do FOR I = 1 TO H; - ,C_ -- 

DO FOR J = 1 TO B: - 

IF -‘(I <= 1 <= 20) 
ERROR; -- 

E -(I <= J <= 20) 
ERROR: --- 

IF -(l <= K <= 2) 
ERROR; ..-- 

IF -(l c= I <= 20) 
ERROR; 

IF ;(I <= J <= 20) 
EZROR; 

IF “(1. <= K-l <= 2) 
%RRoR; -- 

THEN SUBSCRIPT RANGE __- "--- 

THEN SUBSCRIPT RANGE -- -__1 

THEN SUBSCRIPT RANGE --- 

THEN SUBSCRIPT RANGE _---- 

THEN SUBSCRIPT RANGE -_I 

THEN SUBSCRIPT RANGE -- c_ 

IF XK = D THEN ZERODIVIDE ERROR: - - -- 

A(I, J, K) = A(I, J, K-l) / XK 

END: -- 

END: 

END: 

_PROCEDURE LOOKUP (I, J, K); .- 

DECLARE INTEGER I, J, K; 

CASE: 

K = 1: 

IF -(l <= I <= 20) THEN SUBSCRIPT RANGE -- 
ERROR; -- 

IF -(I <= J <= 20) THEN SUBSCRIPT RANGE 
ERROR: 

--- me 
*-_I_ ’ 

IF "(1 <= K <= 2) THEN SUBSCRIPT RANGE 
ERROR: 

_-I_ 

PRINT "AREA OF” I, J "RECTANGLE IS" 
A(I,--J, K); 
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IF -(l <= I <= 2 0 ) - ,--- - -- THEN SUBSCRIPT RANGE -._*- 
ERROR: 

YE21 IF -(l <= J <= 20) THEN SUBSCRIPT RANGE 
ERROR; 

_--- 

x22 IF -(l <= K <= 2) THEN SUBSCRIPT RANGE --- -- -_-- 
ERROR: 

:2 7 PRINT "AREA OF" I, J "TRIANGLE IS" 
Z~J,--FE -.- - - 

- 

:28,29 ELSE: PRINT "PARAMETFR.ERROR: K = " K; 

:3 0 

.3 1 

.3 2 

33 

34 

35 

36 

37 

38 

END; 

END: 

CALL INIT (20,20); 

LOOP FOREVER: - " 

READ PI, P2, P3; -- 

IF I?3 = 0 THEN STOP: -- --- - 

ELSE CALL LOOKUP (?l P2, P3): ---- - 

END ; _-- 

END: 

FIGURE 2 

The program of Figure 1, with probes for zero-divide 
and subscript range errors inserted. The probes 
shown are those which would be inserted by a naive 
dynamic test too1 and have statement numbers pre- 
ceeded by the letter "E". 
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1 

2 

3 

Al 

4 

5 

6 

7 

0 

9 

10 

A2 

11 

12 

13 

14 

15 

16 

17 

A3 

18 

19 

20 

21 

A4 

22 

PROCEDURE AREAS: 

DECLARE REAL A(20,20,2), INTEGER Pl, P2, P3; - -- ---.- 

PROCEDURE INIT (H, R): 

ASSERT NO SIDE-EFFECTS ..--- - ~ 

DECLARE INTEGER H, B, I, J, K, REAL XK; -- -- 

IF H > 20 THEN ERROR STOP: - - ~_ - 

IF B > 20 THEN ERROR STOP: -- ----- 

DO FOR I = 1 TO Y: -- - -- 

A(1, 1, 1) = I; 

DO FOR J = 2 TO B; II -_I -- 

A(I, J, 1) = A(1, J-l, 1) -I- I: 

ASSERT A(1, J, 1) = I*J; ---a 

END ; -.- 

END ; I-- 

K = 2: 

XK = 2.0: 

no FOR I = 1 TO H: -- -- - 

DO FOR J = 1 TO B; -- - 

A(1, J, K) = A(I, J, K-1) / XK: 

ASSERT A(I, J, 2) = 0.5 * A(1, J, 1): 

END: -- 

END ; 

END: 

PROCEDURE LOOKUP (I, J, K); --- 

ASSERT NO SIDE-EFFECTS: --_ - -- I 

DECLARE INTEGER I, J, K; --_ -- 
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A5 

.A6 

%3 

24,25 

26,27 

28,39 

30 

31 

32 

33 

34 

35 

36 

37 

38 

ASSERT 1 <= I <= 20; 

ASSERT 1 <= J <= 20: 

CASE: 

K = 1: PRINT "AREA OF" I, J "RECTANGLE IS" 
AtI, J,K); 

K = 2: PRINT "AMA OF" I, J "TRIANGLE IS" 
AtIr J,K);- 

ELSE: PRINT "PARAMETER ERROR: R = M R; 

END: 

END; 

CALL INIT (20,201; -- 

LOOP FOREVER: - --- 

READ Pl, P2, P3: 

IF P3 = r) THEN STOP; _I -.-- 

ELSE CALL, 1,OOKUP (Pl, P2, P.3); -- 

END ; 

END; 

FIGTJRE 3 

The Program of Figure 1 as it might be augmented by 
assertions capturing the intent of the code. 

599 



1 PROCEDURE AREAS: 

2 DECLARE REAL A(20,20,2), INTEGER Pl, P2, P3: --_- ~- 

3 PROCEDURE INIT (H, B); -- 

4 DELCARE INTEGER H, B, I, J, K, REAL XK; -- --- 

Pl,l DECLARE INTEGER HTEMP, RTEMP; -- --_- 

Pl,2 HTEMP = H: 

Pl,3 BTEMP = B: 

5 IF H > 20 THEN ERROR STOP; -- --- 

6 IF B > 20 THEN ERROR STOP: ,-- 

7 DO FOR I = 1 TO H; -- - - 

8 A(1, 1, 1) = I; 

9 DO FOR J = 2 TO R; -- -- - 

10 A(I, J, 1) = R(1, J-l, 1) + I; 

P2,l IF A(1, J, 1) -= I * J THEN PRINT "ASSER- --_ 
RON VIOLATION AFTER STATEMENFlO'rw 
A(I, J, I), I, J: 

1 1 END ; 

12 END: 

13 K = 2; 

14 XK = 2.0; 

15 

16 

17 

P3,l 

DO FOR I = 1 TO H: .-- - -- 

DO FOR J = 1 TO R: -- - - 

A(1, Jr K) = A(I, J, K-l) /XK: 

IF A(1, J, 2) -= 0.5 * AtI, J, 1) THEN -_- 
PRINT "ASSERTION VIOLATION AFTER STATEMENT 
17" A(1, J, 2), I, J: 

18 

19 

END ; 

END ; 
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P1,4 

??1,5 

f!@ 

;I 1 

22 

F'rl, 1 

F'4,2 

F'4,3 

F'4,4 

F'5,1 

F6,l 

23 

24,?5 

26;,27 

3 1 

3 2 

3 3 

IF H u= HTEMP THEN PRINT "SIIX EFFECTS VIOLaTION ." .,-- -. -.--.--- 
FOR H" H, HTEMF': 

IF n -= RTEMP THEN PRINT "SIDE EFFECTS VIOLATION _-.- --.-- --- . . " 
FOR B" B, RTEMP: 

END ; --._. 

PROCEDURE LOOKUP (I, J, K): "_..^. .-.-. -.- -- 

DECLARF: INTEGER I, J, K: _-.-_- ---.--.-.--- 

DECLARE INTEGER ITEMP, JTEMP, KTEMP; 

ITEMP = I: 

JTEMP = J; 

KTEMP = K: 

LK -(I <= I <= 20) THEN "RINT "ASSERTION 17IOLA- 
-----II .- --- TIDN AFTER STATEMSNT 22 I: 

IF -(l <= J <= 20) THEN PRINT "ASSERTION TrIOLA- ---- 
TION AFTER STATEMEN~--?~"--ii;"-.- 

CASE : --. -- 

K = 1.: PRINT "AREA OF" I, J "RECTANGLE IS" -- --- 
A(I, J, Kl; 

KC = ?: PRINT "AREA OF" I, J "TRIANGLE IS" 
R(1, J, K):-- 

F,LSE: PRINT "PARAMETER ERROR: K = "K: --.._. -- 

END; -_.- 

IF I -= ITEMP THEN PRINT "SIDE EFFECTS 17IOLATION 
i?%! I" I, ITEMP: 

-- 

IF J -= JTEMP THEN PRINT "SIDE EFFECTS VIOLATION 
Fop, J" J, JTEMF;-'- I"----- 

IF K -= KTEMP THEN PRINT "SIDE EFFECTS VIOLATION 
FQR K" K, KTE+f---'- ---.---- 

END : ---- 

CALL INIT (20t 20): ------ 

LOOP FORE\IER; 
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34 

35 

36 

37 

REAT? Pl, P2, P3: 

IF P3 = 0 THEN STOP: -_,---- _-..- -_ 

ELSE CALL LOOKUP (Pl, P?, P3); 

END: 

35 END ; -_-- 

FIGURE 4 

The Program of Figure 1 as it might be augmented by 
probes inserted by an assertion checking tool in 
response to the assertions shown in Figure 3. The 
inserted probes are denoted by line numbers begin- 
ning with P. Line number PI,J is attached to the 
Jth statement generated as a result of assertion AI 
in Figure 3. 
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0 3,4 

ref: h 

ref: b 

re'f: 
def: 

ref: 
def: 

ref: 
def: 

ref: 

h 
i 

b 
j 

i ,j ,A 

def: j 

def: i 

def: k,xk 

Figure 5 

21,22 

8 

23 

The flowgraphs of the three procedures in the example program of Fig, 1. 
The nodes are numbered by the statement of Figure 1. For each node, the 
program variables which are defined there and referenced there are listed. 
Note that node 36 represents a procedure invocation with variables as 
arguments. Thus the ref and def lists cannot be completed. 
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program 
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Figure 9. Use bf Dynamic Test Tools 
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A MODIFIED KROENIG-PENNEY MODEL 

Francis E. Council, Jr.' 

ABSTRACT. The Kroenig-Penney model of a crystal has been modified such 
that it Fan be related to specific materials. One electron Green's functions 
have been used to introduce ionization potentials and thus gain specificity. 
This approach permits polyvalent materials to be studied with applications to 
the theory of elasticity where change of the internal energy of a crystal is 
considered as a result of deformations. 

I* INTRODUCTION. The binding energy of a solid is considered as result- 
ing from the alteration of the valence electron wave functions and the ion core 
wave functions. Since the core electrons shield each other, the primary cause 
of the binding energy is the valence electrons. There are several ways of de- 
scribing the valence electrons; Frohlich's [l] approach, as well as that of 
many others not listed, was to divide a crystal of the metal into polyhedrons. 
Each polyhedron was associated with one atom and it was assumed that there was 
little, if any, overlap of the wave functions of the electrons of one polyhed- 
ron or cell with the electrons of another cell. This approach ignores the long 
range Coulombic interactions between ion-cores and the valence electrons since 
the boundary condition is that the normal derivative of the wave function is 
equal to zero at the boundary of a cell. 

If a polyvalent atom is being considered, then the wave function is usually 
approximated as the result of an average potential; Raimes [2,3] is an example 
of ,this. Sachs [4] showed how the original Wigner-Seitz model with only 
bne electron in a cell can be abandoned by assuming a uniform charge distribu- 
tion. The free electron approximation was the approach that Wigner and Seitz 
[5,6] and many others have used, whereas the tight binding approximation was 
used by Mott and Jones [7] in which a valence electron is affected to a much 
greater degree by the Coulombic potential of the parent ion than by neighbors. 
Both the tight binding.approximation and the free electron approach have an 
applicability, particularly for the alkali metals. A possible reason that both 
methods, free electron and tight binding, are useful is that the Fermi surfaces 
for these metals are approximately spherical such that pressure changes do not 
markedly affect a Fermi surface although Bardeen [g] has indicated that there is 
a fifteen percent difference between the experimental and theoretical values of 

the compressibility of lithium. 

In view of the preceding statements, some other approach should be used if 
the properties of a polyvalent material are to be described properly. Also, 
Nazieres and Pines [9] have indicated that the kinetic energy and the potential 
play roughly comparable roles in determining electron behavior, implying that 
neither the tight binding nor free electron approximation is adequate for a 
proper description of the valence electrons. One way of combining these two 
descriptions is to use Bloch functions with a Kroenig-Penney model of the crys- 
tal being modified, such that both the Coulombic and repulsive potentials are 
inc!.uded. 

%rmerly with Management Information Systems, Directorate Army Mobility Equip- 
ment Research and Development Command, Fort Belvoir, VA. Dr. Council is present- 
ly with Vitro Laboratories, Inc., Silver Spring. MD. 
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II. THE TIGHT BINDING APPROXIMATION WAVE FUNCTION, One way of developing 
wave functions that are suitable for the tight binding approximation is to use 
one electron Green's functions. Start first with the wave function in the 
Schroedinger representation, 

H crlt> a = ig at <rlt> (1) 

with an associated Green's function, 
a (isx - H ? iC)G+(f,r';t,t') = 6(x - r')6(t - t'). (2) . 

The Green's function is a function of two spatial variables, r and r'; two time 
variables, t and t'; and a parameter E, introduced in order that the passage of 
time may be considered in both a forward and reverse direction. The Green's 
function takes the wave function at one position and time to some other position 
and time, 

~' 1 

ifi IG_(r,r';t,t')<P'lt'>dr' for t > t' 

<rlt> = (3) 

ij3 SG+(r,r';t,t')<P'lt'>dr' for t ( t' 

If the Hamiltonian is independent of time, then a Fourier transform of the 
time variable gives 

P 

G+(rtr';t,t') "(&)$ 
iE(t 

dE G2(r,r';E) e- ~ 
- t') 

and is a solution of the equation, 

(E - H ? iE)G+(r,r';t,t') = S(r - a') . (5) 

Since the Green's function is not translationally invariant, if a Fourier trans- 
form is performed on the Green's function with respect to the spatial variables, 
then both variables must be transformed. Consequently, 

G+(p,p’ ;E) = <plG+I p’> = 1 II dr dr' e -i(p.* - p’ . r’lfi Gk(r,r';E) 
mm3 (6) 

Now return to equation (S), pre-and post multiply by <pi and Jp'> respec- 
tively, and insert a unity expression, Jp"><p"), with the result 

< piE - H ~i&Ip”><p”IG+Ip’> = 6(p - p’) (7) 
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The kinetic energy of equation (7) is expressed as 

<pl~“V2/2nl~p’> = g S(p - p’) , (8) 

While if a tight binding approximation is being considered, then the potential 
can be introduced as a Dirac delta function potential. By means of this tech- 
nique, the potential energy for each of the valence electrons can be expressed 
in terms of the various ionization potentials. If the Dirac delta function po- 
tential is 

v = -q(r’) 
then the ionization potential is introduced by letting t’l be equal to the ioni- 
zation potential. The Fourier transform of this potential is 

V(p’) = - ‘1 
(27M) 92 

and 

<PIv(p) IP’> = - (2;L)J/*6(p -p’> 

(10) 

(11) 

. A way of further development is to use perturbation theory by modifying an 
equation by Harrison [lo], 

+ 
/ 

G”k+Wlpl >dp G”(pl)<pllVlp’>Go(p’)~. . . (12) 

with the second wave number index being suppressed since the indices are always 
the same, The zero order Green’s function, Go(p), is obtained from equation (5) 
by letting the.potential energy of the Hamiltonian be equal to zero. If equa- 
tion (11) is considered, evaluation of the second and third terms of equation 
(12) gives 

-G”(p)Go(p’)qG(p-p’) 1131 

and 

GO(p)GO(p)G (P’ h2 6(P-P’). (14) 

It is obvious from the preceding that a series is being developed such that 

G(p,p’) = (p2/2m) 6Cp - p’) (15) 
1 + fllp’J2/2m (27M13/2 
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With a suitable Green's function having been developed, then the individ- 
ual wave functions in p space are obtained as 

X(P) = ef G(P,P') x(P') dp' (16) 

The wave function in r space is obtained by an inverse Fourier transform of 
equation (16) 

'TB = 
ip* f$ 

XTB (PI dP (17) 

with the subscript 
tion has been used. 

TB being used to indicate that the tight binding approxima- 
The momentum wave functions that are used here are semi- 

empirical wave functions developed by Duncanson and Carlson [ll, 121 based 
on initial work by Slater [13]. Slater developed some approximate analytical 
expressions which correct for the shielding effect of the core electrons of the 
nucleus. 

III. THE FREE ELECTRON APPROXIMATION. If an electron is no longer primar- 
ily influenced by its parent ion, then its behavior is described by the quasi- 
free electron approximation. The influence of a periodic potential of a crystal 
causes the electron's motion to be no longer perfectly free. This potential 
energy affecting the electron can be considered as a combination of Coulombic 
and repulsive potential as a function of position; in order to simplify comput- 
ations it will be considered as a constant. The effect of temperature could 
also be included at this time; again in order to simplify computations, this 
effect will be ignored. 

These quasi-free electrons exist in a potential well of energy. The elec- 
trons fill up all the energy states in the well to a level above the bottom of 
the well with the potential depth being related to the cut off energy as 

vo =E,+e$ (18) 

The expression of e is the minimum energy to remove an electron from a metal 
and is usually considered as the work function. Consequently, if the work func- 
tion is expressed in electron volts and the magnitude of the depth of the poten- 
tial well for a particular valence electron is its ionization potential, then 
the cut off momentum value is 

PO = (2m(Vi - e *))+ 

The expected value of the magnitude of the momentum is 

{pi\= J; p2dp 

$' o pdp 
= 5 (2m(V - e *))' 

i 
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such that a wave function related to an average value of the momentum is 

(21) 

with the subscript QFE indicating that the quasi free approximation is being used. 

The Block Wave Functions. Two wave functions have been developed, one suit- 
able for the quasi-free approximation and the other for the tight binding approx- 
imation. These can be combined into a Bloch wave function as 

= c 
j 

'QFE (r> YTBh - rj> (22) 

with '+TB(r - rj) being related to the periodic potential. The wave function 

for a sum of wave functions as would be reflected by the different ionization 
potentials is 

Y= +pj 
J 

(23) 

with the j being a subscript associated with the different ionization poten- 
tials. 
and V 

For example, for a divalent material with ionization potentials of V1 

2 
for the valence electrons, 

IV, CONCLUSIONS. A prescription by which a Kroenig-Penney model of a 
crystal can be modified for specific materials has been obtained, This develop- 
ment can be modified for greater precision if the average potential of a crystal 
is given as a function of position or if the effect of temperature is included, 
The primary reason for this derivation is to facilitate calculations in which 
the change of internal energy of a crystal is a result of deformations. 
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COMPUTATION OF MATRIX CHAIN PRODUCTS 

T. C. Hu and M. T. Shing 
University of Cali.fornia, San Diego 

La Jolla, CA 92093 

ABSTRACT. This paper considers the computation of matrix chain products 
of the form Ml X M2X---XM,-1. If the matrices are of different dimensions, the 
order in which the matrices are computed affects the number of operations. An 
optimunl order is an order which minimizes the total number of operations. We 
present some tlleorerrls about an optimum order of computing the matrices. Based 
on these theorems, algorithms for finding an optimum order are developed. 

1. INTRODUCTION. Consider the evaluation of the product of n-l matrices 

M = M1XM2X...xMn 1 (1) 

where Mi is a wi X’ wit1 matrix. Since matrix multiplication satisfies the associa- 
tive law, the final result M in (1) is the same for all orders of multiplying the 
matrices. However, the order of multiplication greatly affects the, total number of 
operations to evaluate M. The problem is to find an optimum order of multiplying 
the matrices such that the total number of operations is minimized. Here, we 
assume that the number of operations to multiply a px q matrix by a qX r matrix 
is pqr. 

In refs, 1 and 6, a dynamic programming algorithm is used to find an optimum 
order. The algorithm needs O(n3) time and O(n2) space: In ref. 2, Chandra pro- 
posed a heuristic algorithm to find an order of computation which requires no more 
than ZT, operations where To is the total number of operations to evaluate (1) in an 
optim.um order. This heuristic algorithm needs only O(n) time. Chin (ref. 3) pro- 
posed an improved heuristic algorithm to give an order of computation which re- 
quire s no more than 1. 25 To. This improved heuristic algorithm also needs only 
O(n) time. 

In this paper we first transform the matrix chain product problem into a prob- 
lem i-n graph theory - the problem of partitioning a convex polygon into non-inter- 
secting triangles (see ref. 8), then we state several theorems about the optimum 
partitioning problem. Based on these theorems, algorithms for finding optimum 
partitions are developed. 

2. PARTITIONING A CONVEX POLYGON. Given an n-sided convex polygon, 
such as the hexagon shown in Fig. 1, the number of ways to partition the polygon into 
(n-2) triangles by non-intersecting diagonals is the Catalan numbers (see, for 
example, ref. 7). Thus, there are two ways to partition a convex quadrilateral, 
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five ways to partition a convex pentagon, and fourteen ways to partition a convex 
hexagon. 

Let every vertex ‘i of the convex polygon have a weight wi. We can define 
the cost of a given partition as follows: The cost of a triangle is the product of the 
weights of the three vertices, and the cost of partitioning a polygon is the sum of the 
costs of all its triangles, For example, the cost of the partition of the hexagon in 
Fig. 1 is 

W1w2wj f w1wjw6 + w3w4w6 + w4wrjw6 (2) 

Fig. 1 

Jf we erase the diagonal from V3 to V6 and replace it by the diagonal from Vl to 
V4, then the cost of the new partition will be 

w~w2w3 + w1w3w4 + W1W4Wb + W4W5W6 * (3) 

We will prove that an order of multiplying (n-l) matrices corresponds to a 
partition of a convex polygon with n sides. The cost of the partition is the total num- 
ber of operations needed in multiplying the matrices. For brevity, we shall use n- 
gon to mean a convex polygon with n sides, and the partition of n-gon to mean the 
partitioning of an n-gon into (n-2) non-intersecting triangles. 

For any n-gon. one side of the n-gon will be considered to be its base, and 
will usually be drawn horizontally at the bottom such as the side VI-V6 in Fig. 1. 

616 



This side will be called the base, all other sides are considered in a clockwise way. 
Thus, V1- V2 is the first side, V2-V3 the second side,. . . , and V5-V6 the fifth side. 

‘The first side represents the first matrix in the matrix chain and the base 
represents the final result M in (I). The dimensions of a matrix are the two weights 
associated with the two end vertices of the side. Since the adjacent matrices are 
compatible, the dimensions ~1 X w2, w2 X w3# l , , , w can be written inside 
the vertices as wl, w2, . . . , w,. The diagonals are t 

fi-lXW? 
e partial products. A partition 

of an n-gon corresponds to an alphabetic tree of n-l leaves or the parenthesis prob- 
lem of n-l symbols (see, for example, ref. 5). It is easy to see the one-to-one cor- 
respondence between the multiplication of n- 1 matrices to either the alphabetic tree 
or the parenthesis problem of n-l symbols, We state this fact as Lemma 1. 

Lemma 1. Any order of multiplying n-l matrices corresponds to a partition of an 
n-gon. I 

.We can also establish the correspondence between the matrix-chain products 
and the partitions of a convex polygon directly. See ref. 8 for more details. 

2. Lemm.a The minimum number of operations to evaluate the following matrix 
chain products are identical. 

MnxM1x-* xMnw3xMn-2 

l 

.  

M2xM3x**. xMn 1xMn 

where Mi has dimension wi X wi+l and w SW Note that in the first matrix 
chain, the resulting matrix is of dimension 

n+l 1’ 
wl by w,. In the last matrix chain, the 

resulting matrix is of dimension w2 by wl . But in all cases, the total number of 
operations in the optimum orders of multiplication is the same. 

Proof.. The cyclic permutations of the n- 1 matrices all correspond to the same 
n-gon and th us have the same optimum partitions. H 
(This Lemma .was obtained independently in ref. 4 with a long proof. ) 

F,rom now on, we shall concentrate only on the partitioning problem. 

The diagonals inside the polygon are called arcs. Thus, every partition con- 
sists of n-2 triangles formed by n-3 arcs and n sides. 

In a partition of an n-gon, the degree of a vertex is the number of arcs inci- 
dent on the vertex plus two (since there are two sides incident on every vertex). 
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Lemma 3. In any partition of an n-gon, n 2 4, there are at least two triangles, 
each has a vertex of degree two. (For example, in Fig. 1, the triangle VlV2V3 has 
vertex V2 with degree 2 and the triangle V4 V V has vertex V5 with degree 2. ) I 5 6 

Lemma 4. Let P and P’ both be n-gons where the corresponding weights of the 
vertices satisfy Wi < Wi f , then the cost of an optimum partition of P is less than 

or equal to the cost of an optimum partition of P’ . n 

If we use C(w1, w2, w3, -, *, wk) to mean the minimum cost of partitioning the 
k-gon with weights Wi optimally, Lemma 4 can be stated as 

C(wI,w2,...,wk) 5 C(w;,w,I.....w,I) if wiKw! 
1 

We say that two vertices are connected in an optimum partition if the two 
vertices are connected by an arc or if the two vertices are adjacent to the same side. 

In the rest of the paper, we shall use V 1, V 2, , l . , Vu to denote vertices which 
axe ordered according to their weights, i. e., wl zz wZ 5 l . . gwn. To facilitate the 
presentation, we introduce a tie-breaking rule for vertices of equal weights. 

If there are two or more vertices with weights equal to the smallest weight 

w1 ’ we can arbitrarily choose one of these vertices to be the vertex VI. Once the 
vertex Vl is chosen, further ties in equal weights are resolved by regarding the 
vertex which is closer to Vl in the clockwise direction to be of less weight. With 
this tie -breaking rule, we can unambiguously label the vertices VI, V2,. , . , Vn for 
each choice of Vl . 

We shall use V,, Vb’ . . , to denote vertices which are unordered in weights, 
and T ijk to denote the product of the weights of any three vertices Vi, Vj and Vk. 

3. SOME CHARACTERISTICS OF THE OPTIMUM PARTITIONS. First, let 
us consider the polygons where there are two or more vertices with equal weights wl. 

Lemma 5. For every choice of Vl, V2, . . . (as prescribed), if the weights of the 
vertices satisfy the condition 

w1 2 =w <w 3Y?-<Wn , 

then Vl -V2 exists in every optimum partition of the n-gon. 

Proof. The lemma is true if Vl-V2 is a side of the n-gon. Hence, WC can assume 
that VI, V2 arc not adjacent to the same side of the n-gon. 

The proof is by induction on the size of the n-gon. The lemma is true for a 
triangle and a quadrilateral. Assume that the lemma is true for all k-gons 
(3 s k I n- 1) and consider the optimum partitions of an n-gon. 
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By Lemma 3, we know that there are at least two vertices with degree two in 
each optimum partition of the n-gon. WC have the following two cases. 

(i) In an optimum partition of an n-gon, one of the vertices with degree two, say 

vi * has weights larger than wl . In this case, we can form an (n-l)-gon by remov- 
ing Vi with its two sides. By induction assumption, Vl-V2 is present in every 
optimum partition of the (n- I)-gon. 

(ii) Consider the complementary case of(i), i. e. all vertices with degxee two have 
weight:s equal to w1 in an optimum partition of the n-gon. In other words, Vl and 
V-2 are the only two vertices with degree two in that optimum partition, as shown 
symbolically in Fig. 2a. Note that every arc in the optimum partition must dissect 
the n-gon into two subpolygons in such a way that V1, V2 can never appear in any 
subpolygon together, else there will be more than two vertices with degree two in 
the optimum partition. 
V2 are connected. 

In Fig. 2b, we show a partition of the n-gon in which V1 and 
Let u6 denote the n- 2 triangles in Fig. 2a by PI, P2, , . , , P,- 2. 

Except PI and Pn-2, all the other n-4 triangles are made up of one side and two 
arcs each. For each of these n-4 triangles, we can find a unique triangle in Fig. 2b 
such that they both consist of the same side. We u6e Pi to denote the image of Pi 
in Fig. 2b. The only two triangle6 left unmatched in Fig. 2b are V1VaV2 and VlV2Vi 
and they are the images of P1 and Pn- 2, respectively. Let the cost of Pi be C. 
and the cost of Pi’ be Ci’ . Since Ci’ < Ci for 1 < i < n-2, the partition in Fig, Zb 
is cheaper than that in Fig. 2a and we have a contradiction. q 

(a) 

Fig. 2 
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Theorem 1. For every choice of VI, V2,. . . (as prescribed), if the weights of the 

vertices satisfy the condition 

=w <w SW w1 2 3 4s”‘sWn I 

then every optimum partition of the n-gon must contain a triangle VlV2Vp for some 
vertex VP with weight equal to w3. Note that if w1 = w2 < w3 < w4 < * l . s wn, then 
every optimum partition must contain the triangle VlV2V3 since there is a unique 
choice of V3. 

Proof. Similar to Lemma 5, we can prove this theorem by induction on the size of 
the n-gon. The theorem is true for any triangle or quadrilateral satisfying the 
above condition, Assume the theorem is true for all k-gons (3 5 k < n-l) and con- 
sider the optimum partitions of an n-gon. 

From Lemma 5, we know that Vl, V2 are always connected in every optimum 
partition. Hence, without loss of generality, we can assume Vl , V 2 to be adjacent 
to the same side of the n-gon. Again, we have the following two cases. 

(i) In an optimum partition, 
weight larger than w3. 

one of the vertices with degree two, say Vi, has 
In this case, 

(n-l)-gon. 
we can remove Vi with its sides and form an 

By induction assumption, every optimum partition of the (n-l)-gon con- 
tains a triangle VlV2Vp where w = w3. 

P 

(ii) Consider the complementary case if (i), in an optimum partition of the n-gon, 
all vertices with degree two have weights less than or equal to w3. 
a side of the n-gon, 

Since VI-V2 is 
for n ;r 4, either VI or V2 (but not both) can have degree two, 

We have the following two subcases: 

(a) If there are more than one vertex whose weight equals ~3, we can form 
an (n-1)-gon by removing one of those degree two vertices whose weight equals w3 l 

By induction assumption, every optimum partition of the (n-1)-gon contains a tri- 
angle VIV2Vp for some VP with wp = w3. 

(b) There exists only one vertex of weight w3. In this case, there must be 
only two vertices with degree two in the optimum partition of the n-gon. These two 
vertices are V3 and either VI or V2. 
has degree 2. 

Without loss of generality, we can assume Vl 
The situation is shown symbolically in Fig. 3a. Again, every arc in 

the optimum partition must dissect the n-gon in such a way that V.1 and V3 can never 
appear in any subpolygon together, In Fig. 3b, we show a partition containing the 
triangle VlV2V3, IJsing arguments similar to those in the proof of Lemma 5, we 
can show that the partition in Fig. 3b is cheaper and we obtain a contradiction. I 
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(a) b) 

Fig. 3 

Theorem 2 -- -- Fox every choice of VI, V2,. . . (as prescribed), if the weights of the 
vertices of the n-gon satisfy the following condition, 

w1 
=w “...ZW 

2 kCw 
k+l I a** 5 wn 

for some k, 3 5 k c n, then every optimum partition of the n-gon contains the k-gon 
VI-v2 - 9.. -vk. 

Proof, The proof is by induction on the size of the n-gon. The theorem is true for 
any triangle and quadrilateral. Suppose the theorem is true for all polygons with 
(n-l) sides or less and consider the optimum partitions of an n-gon. 

From Lemma 3, there exist at least two vertices having degree two in every 
0ptimLun partition. We have the following two cases. 

(i) In an optimum partition of the n-gon, one of the vertices with degree two, say 
vi I has weight larger than wI . In this case, 
two sides and obtain an (n-l)-gon. 

we can remove the vertex Vi with its 
By induction assumption, every optimum parti- 

tion of the (n-l)-gon contains the k-gon V1-V2- l . l -Vk. 
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(ii) Consider the complementary case of (i), i. e, , all the vertices with degree two 
have weights equal to w1 in an optimum partition. Let two of these vertices be 

vip V** 
J 

We have the following two subcases: 

(a) k > 3. We first form an (n-l)-gon by removing Vi and its two sides. 
There are (k-l) vertices with weights equal to w1 in the (n-l)-gon. By induction 
assumption, every optimum partition of the (n-l)-go n contains the (k-1)-gon which 
includes V. 

J 
as one of its vertices. Since Vj has degree two in the optimum parti- 

tion, its two neighboring vertices, say Vx and V , must also have weights equal 
to Wl and the arc Vx-V 

$: 
exists in the optimum Tartition (Fig. 4). Similarly, we 

can remove the vertex with its two sides Vj-Vx and 
By induction assumption, 

V 
1 

-V y and form an (n-l)- 
gon. every optimum partition o the (n- 1) -gon contains 
the (k-1)-gon formed by the (k-l) vertices with weights equal to w1 in the (n-l)-gon 
and Vi is one of the vertices in the (k-1)-gon, 
and the (k- 1)-gon together, 

NOW, by pasting the triangle VxVjVy 
we form a k-gon which includes all the vertices with 

weight equal to w1 in the n-gon and this k-gon is contained in the optimum partition 
of the n-gon. 

Fig, 4 

(b) k = 3. In this case, we have w1 = wz = w3 < w4 5 . . . <wn. Without loss 
of generality, we can assume V 1 and V2 both have degree two in an optimum parti- 
tion. Again, we can form in (n- 1)-gon by removing V1 and its two sides. By 
Lemma 5, V2 and V3 are connected in every optimum partition of the (n-1)-gon. 
Since V2 has degree two, V2-V3 must be a side of the n-gon. Next, we can remove 
V2 with its two sides and form an (n-1)-gon. By Lemma 5, Vl,V3 are connected 
by a side of the n-gon. The situation is shown in Fig. 5a, Then, the partition in 
Fig. 5b is cheaper because 
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and 

T 
123 

tT 
12y q 

c(wl,wx....Iw 
Y’ 5 

Fig. 

T 
13x + T23y * 

C(w3.wx I...) WY) . n 

5 

Now, whenever we’have three or more vertices with weights equal to w1 in 
the n-gon, we can decompose the n-gon into subpolygons by forming the k-gon in 
Theorem 2. The partition of the k-gon can be arbitrary, since all vertices of the 
k-gon are of equal weight. For any subpolygon with two vertices of weights equal 
to Wl, we can always apply Theorem 1 and decompose the subpolygon into smaller 
subpolygons. Hence, we have only to consider the polygons with a unique choice of 
Vlr i.e., each polygon has only one vertex with weight equal to wl. 

Theorr&. For every choice of VI, V2,. . . (as prescribed), if the weights of the 
vertices satisfy the condition 

then VI -V2 and Vl-V3 exist in every optimum partition of the n-gon. 

Proof. We can again use Lemma 3 and prove Theorem 3 by the induction on the size 
of the n-gon. n 
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(a) A stable partition (b) An optimum partition 

Fig. 6 

I.n any partition of an n-gon, every arc dissects a unique quadrilateral. Let 
v VY’ v,, V be the four vertices of an inscribed quadrilateral and Vx-V, be 
th$‘arc which di:sects the quadrilateral. We define Vx-V, to be a vertical arc if 
(6) or (7) is satisifed. 

min(w , w 
X 

z) < min(w , ww) 
Y 

(6) 

min(wx, wz) = min(w I Ww) 
Y 

1 
(7 1 

max(wxrwz) 5z max(w #w 1 
Y w 

We define Vx-V, to be a horizontal arc if (8) is satisfied 

min(w 
X 

, wz) > min(w P ww) 
Y 

max(wx,wz) < max(wyeww) 1 

(8) 

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs and vertical 
arcs from now on. 

Corollary 2. All arcs in an optimum partition must be either vertical arcs or hori- 
zontal arcs. I 

Theorem 5. Let V, and V, be two arbitrary vertices which are not adjacent in a 
polygon, and VW be the smallest vertex from V, to Vz in the clockwise manner 

(VW #V,* VW f V,), and Vy be the smallest vertex from V, to Vx in the clockwise 
manner (Vy # V,, Vy # Vz). This is shown in Fig. 7 where we assume that 
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.- Fig. 7 

w CW z and w SW w. 
anXy optimum parYtition is 

The necessary condition for Vx-Ve to exist as an h-arc in 

w < wx <wz<w l q 
Y W 

We call any arc which satisfied this necessary condition a potential h-arc. 
Let P be the set of potential h-arcs in the n-gon and H be the set of h-arcs in the 
optimum partitions; we have P 1 H where the inclusion could be proper. 

Corollary 3. Let VW be the largest vertex in the polygon and Vx and V, be its two 
neighboring vertices, If there exists a vertex Vy such that wy < wx and wy < wz, 
then Vx-Vz is a potential h-arc. n 

Two arcs are called compatible if both arcs can exist simultaneously in a 
partition, Assume that all weights of vertices are distinct, then there are (n-l)! 
distinct permutations of the weights around an n-gon. For example, the weights 10, 
11, 25, 40, 12 in Fig. 6(a) correspond to the permutations w1, w2, w4, w5, w3 
(where wI < w2 < w3 < w4 < w,). There are infinitely many values of the weights 
which correspond to the same permutation, For example, 1, 16, 34, 77, 29 also 
correspond to wl, w2, w4, w5, w3 but its optimum partition is different from that 
of 10, 11, 25, 40, 12. However, all the potential 
same permutation of weights are compatible. We 
Theorem 6. 

h-arcs in all the n-gons with the 
state this remarkable fact as 

Theorem 6. All potential h-arcs are compatible. n 
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Note. that any potential h-arc Vx-Vz , like the one in Fig. 7, always dissects 
the n-gon into two subpolygons and one of these subpolygons has the property that 
all its vertices except Vx and Vz have weights larger than max(w,, we)* We shall 
call this subpolygon the upper subpolygon of V,-Vz, For example, the subpolygon 
v, - . * . - VW - . . . - v, in Fig. 7 is the upper subpolygon of V,-V, . 

Using Corollary 3 and Theorem 6, we can generate all the potential h-arcs of 
a polygon. 

Let V,-V, be the arc defined in Corollary 3. The arc Vx-Vz is a potential 
h-arc compatible to all other potential h-arcs in the n-gon. Furthermore, there is 
no other potential h-arc in its upper subpolygon. Now consider the (n-1)-gon ob- 
tained by cutting out VW. In this (n-1)-gon, let Vw , be the largest vertex and Vx I 
and V, I be the two neighbors of Vw I . Then Vxt -V, I is again a potential h-arc 
compatible to all other potential h-arcs in the n-gon and there is no other potential 
h-arc in its upper subpolygon which has not been generated, This is true even if 

VW is in the upper subpolygon of Vxt - V, / . If we repeat the process of cutting out 
the largest vertex, we get n-3 arcs, all arcs satisfy Theorem 3. 

The set of h-arcs of the optimum partitions must be a subset of these n-3 arcs, 

The process of cutting out the largest vertex can be made into an algorithm 
which is O(n). We shall call this algorithm the one-sweep algorithm. The output 
of the one- sweep algorithm is a set S of n-3 arcs. S is empty initially, 

The one - sweep algorithm: 

Starting from the smallest vertex, say V 1 , we travel cIockwisely around the 
polygon and push the weights of the vertices successively onto the stack as follows 
(WI will be at the bottom of the stack). 

(a) Let Vt be the top clement on the stack, Vt- 1 be the element immediately 
below Vt , and V, be the element to be pushed onto the stack. If there are two or 
more vertices on the stack and wt > wc , add Vt- 1 -V, to S, pop Vt off the stack; 
if there is only one vertex on the stack or wt < wc , push wc onto the stack. Repeat 
this step until the nth vertex has been pushed onto the stack. 

(b) If there are more than three vertices on the stack, add Vt-l-V, to S, 
pop Vt off the stack and repeat this step, else stop. 

Since we do not check for the existence of a smallest vertex whose weight is 
strictly less than those of the two neighbors of the largest vertex, i.e. the existence 
of the vertex Vy in Theorem 3, not all the n-3 arcs generated by the algorithm are 
potential h-arcs. However, the one-sweep algorithm always generates a set S of 
n-3 arcs which contains the set P of all potential h-arcs which contains the set H 
of all h-arcs in the optimum partitions of the n-gon, i.e., 
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where each inclusion could be proper. For example, if the weights of the vertices 

around the n-gon in the clockwise direction are wl, ~2,. . . , w, where wl 5 w2 
< .., IW n, none of the arcs in the n-gon can satisfy Theorem 3 and hence there is 
no potential h-arcs in the n-gon. The one-sweep algorithm would still generate n-3 
arcs for the n-gon but none of the arcs generated are potential h-arcs. 

4. CONCLUSION. In this paper, we have shown the one-to-one correspond- 
ence between the orders of multiplying a chain of matrices and the partitions of an 
n-sided convex polygon. Then some theorems on the properties of the optimum 
partitions are presented. We have skipped some of the proofs and interested read- 
ers should refer to ref. 8 for details, Based on these theorems, an O(n) algorithm 
for finding a near-optimum partition can be developed (ref. 9). The cost of the parti- 
tion produced by the heuristic algorithm never exceeds 1.155 Copt, where Copt is 
the optimum cost of partitioning the polygon. An O(n log n) algorithm for finding an 
optimum partition is also presented in ref. 8. 

5, ACKNOWLEDGMENT. The authors would like to thank the U. S. Army 
Research Office for their continuing support during the previous years. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The Design and Analysis of 
Computer Algorithms, ” Addison-Wesley, 1974. 
A. K. Chandra, “Computing Matrix Chain Product in Near Optimum Time, ” 
IBM Res. Rept. RC5426 (#24393), IBM Thomas J. Watson Research Center, 
Yorktown Heights, NY, 1975. 
F. Y, Chin, “An O(n) Algorithm for Determining a Near Optimal Computation 
Order of Matrix Chain Product, ” Communication of ACM, Vol. 21, NO. 7, 
July ,1978, pp. 544-549. 
L. E. Deimel, Jr. and T. A. Lampe, “An Invariance Theorem Concerning 
Optimal Computation of Matrix Chain Products, ” North Carolina State Univ. 
Report TR7 9- 14. 
M. Gardner, “Catalan Numbers, ” Scientific American, June 1976, pp. 120- 
124. 
S. S. Godbole, “An Efficient Computation of Matrix Chain Products, ” LEVEE 
Trans.. Computers C-22, 9 Sept. 1973, pp. 864-866. 
H. W. Gould, “Bell and Catalan Numbers, ” Combinatorial Research Institute, 
Morgantown, W. Va. , June 1977. 
T. C. Hu and M. T. Shing, “Computation of Matrix Chain Product, ” to appear 
in SIAM J. on Computing, 1981. 
T. C, Hu and M. T, Shing, “An O(n) Algorithm to Find a Near-Optimum 
Partition of a Convex Polygon, ” to appear in the Journal of Algorithms, 198 1. 

628 



ATTENDANCE LIST 
198 1 Army Numerical Analysis & Computers Conference 

NAME 

A:gquith, C. Frank MICOM 
Btanco, Abel J. Army Electronics R&D Command 
Bogg:j, Paul T. AR0 
Brysn, Ferrell MICOM 
Carroll, Edward J. ARRADCOM 
C:Iviness, B. F. GE R&D 
Chhndra, Jagdish Army Research Office . 
Cllen, Peter C. T. Benet Weapons Laboratory 
Cody, William J. Argonne National Laboratory 
Coleman, Norman P. ARRADCOM 
Conlon, John C. AMSAA 
Dickson, Richard E. MICOM 
F:lber, Conrad Army Aviation R&D Command 
Garcia, Charles R. HSMR 
C.lzaway, M. MICOM 
Gunzkerger, Max University of Tennessee 
Ctimm, Jim Rockefeller University 
Goldstein, Marvin J. Naval Underwater Systems Center 
Hlckett, Robert M. MICOM 
Hafen, John A. WSMR 
Hlusner, Arthur Harry Diamond Laboratories 
Henriksen, Bruce B. BRL 
Herman, Glenn WSMR 
Hirschberg, Morton A. BRL 
Jenkins, Billy Z. MICOM 
John, Billy H. Army Corps of Engineers 
Johnson, Billy H. Waterways Experiment Station 
Johnson, James H. Constr Engr Res Lab 
Komoriya, H. Argonne National Laboratory 
Kring, Jonathan F. TACOM 
Kurtz, Keith Army Engineer Topographic Laboratories 
Lldouceur, Pierre, Department of National Defence, Ottawa 
Launer, Robert L. AR0 
Lenoe, E. M. AMMRC 
Martin, Donald L., Jr. MICOM 
McConnell, Peter J. Army Mobility Equipment R&D Command 
Norris, Alfred H., Jr. Naval Surface Weapons Center 
Nobel, John A. University of Wisconsin 
Opalka, Klaus 0. ARRADCOM/RRL 
Osterueil, Leon J. University of Colorado 

ORGANIZATION 

629 



Attendtince List 
1981 Army Numerical Analysis and Computers Conference 

Parker, A. P. 
Plemmons, Robert J. 
Rice, Bill 
Hiesenfeld, Richard F. 
Roache, Patrick J. * 
Sellg, John N. 
Serbin, Steven M. 
Shen, C. N. 
Shen, Hen-Mu 
Stenger, Frank 
Thornton, Thomas L. 
Wagner, Clifford C., Jr. 
Halbert, James N. 
Uang, Chia Ping 
Ward, Robert C. 
Wu, Julian J. 
Zabusky, N. 

Ai ;mc > 
University of Tennessee 
HSMR 
University of Utah 
Ecodynamics Research Associates, Inc. 
MICOM 
University of Tennessee 
Uaterliet Arsenal 
MERADCOM 
University of Utah 
SAI 
USAMIA 
Army Ballistic Research Laboratory 
Army Natick R&D Laboratories 
Union Carbide Corp 
Benet Weapons Laboratory 
University of Pittsburgh 

630 



>LL”,,, I 1 LL ,13,,1 /L.*> IV\‘!, L’. , ,,,_/ , ,\yL (..,,, ,. ,.,,.- . . . . .., 

REPORT D3CU!dEHThTl0:4 PI?GE 
1’k’F.I) I~iSTl;UC-TIONC 

ner:LiT (:&‘,,msf7 1m,t 

I. HLPOI~T NUMUEH 2, GO”T ACCESSION NO. 3. AECIPIEI4T’S CATALOG NLlMUtR 

AR0 Report 81-3 
1 

,. TIYLE (and Subflllo) 6. TYPE OF REPORT 4 PERIOD COVERED 

Proceedings of the 1981 Army Numerical Analysis 
and Computers Conference Interim Technical. Report 

6. PERFORMING ORG. REPORT NUMBER 

‘. AUTHOR(n) 8. CONTRACT OR GRANT NUhitiEH(s) 

)..PERFORMING OHGANiLATlON NAh!E AIJD ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK 
AREA b WORK UNIT NUMfrERS 

1. C7NTROLLING OFFICE NAME AN0 AoDffESS 12. REPORT DATE 

Army Mathematics Steering Committee on behalf of August 1981 
the Chief of Research, Development and Acquisiti,on 13. NUb.,EEH OF PAGES 

630 
,,. ,.,ON,TOR,flG 4GENCY NAME 4 AODRESS(If dilfcrcnl from ContrOllimp Of/ICC) 15. :ECURITY CLASS, (01 lhle rsporl) 

U. S. Army Research Office 
ATTN : DRXRO-MA 
P. 0. Box 12211 15rr. OFCLASSlFlCATION/DOWNGRAUlNG 

Research Triangle Park, NC 27709 SCHEDULE 

7 ‘1 RIf4UTION STATEMENT (of l/ale ftrporl) 

Approved for public release; distribution unlimited. The findings in this 
report are not to be construed as an official Department of the Army position, 
unless so designated by other authorized documents. 

IB.,U~PLEMCNTARY NOTES 
-- 

This is a technical report resulting from the 1981 Army Numerical Analysis and 
Computers Conference. It contains papers on computer aided designs and 
engineering as well as papers on numerical analysis. 

~~CDS (cor,r,,,uo on ,CY~I.O srda II nc,carsary and ld-rltlfy by block n-bcr) 

mathematical software quadratic A-matrices 
beta and triangular distributions ohmic losses 
multinomial variables algebraic computation 
military construction gun tube problems 
boundary layer equations compressible material 
blast loads Land mines 
hyperbolic conservation laws elastic-plastic structures 
hydrodynamic models control algorithms 
the Gem code minicomputers 
variational methods beam vibrations 
time-stepping methods analytical solutions 
hyperbolic systems dynamic testing 
metcoro logical data Kroenig-Penney model 
pa!-aholic equation matrix chain products 

DD , ::& 1473 EUtTlON OF 1 NOV 65 IS OBSOLETE 
~. - 




